/ SeriousOJ /

Record Detail

Runtime Error


  
# Status Time Cost Memory Cost
#1 Accepted 2ms 580.0 KiB
#2 Accepted 2ms 576.0 KiB
#3 Accepted 2ms 580.0 KiB
#4 Accepted 2ms 576.0 KiB
#5 Accepted 2ms 604.0 KiB
#6 Accepted 2ms 728.0 KiB
#7 Accepted 2ms 532.0 KiB
#8 Accepted 2ms 532.0 KiB
#9 Accepted 2ms 724.0 KiB
#10 Accepted 2ms 576.0 KiB
#11 Accepted 2ms 724.0 KiB
#12 Accepted 2ms 536.0 KiB
#13 Accepted 2ms 508.0 KiB
#14 Accepted 2ms 576.0 KiB
#15 Accepted 2ms 580.0 KiB
#16 Accepted 15ms 532.0 KiB
#17 Runtime Error 8ms 580.0 KiB
#18 Runtime Error 15ms 712.0 KiB

Code

/**
 *  Author: AhSaN (JUST-22)
 *  Created: 06-09-2024  08:09:08
**/
#include <bits/stdc++.h>

#pragma GCC optimize("Ofast")
using namespace std;

template <int64_t M>
struct Mint {
  int64_t v;
  Mint(int64_t n = 0) : v(n % M) { if (v < 0) v += M; }
  static int64_t _pow(int64_t base, int64_t exp) {
    int64_t res = 1;
    for (; exp; exp >>= 1, base = (base * base) % M) {
      if (exp & 1) res = (res * base) % M;
    }
    return res;
  }

  Mint pow(int64_t exp) const { return _pow(v, exp); }
  Mint inv() const { return _pow(v, M - 2); }

  Mint& operator+=(const Mint& o) { if ((v += o.v) >= M) v -= M; return *this; }
  Mint& operator-=(const Mint& o) { if ((v -= o.v) < 0) v += M; return *this; }
  Mint& operator*=(const Mint& o) { v = (v * o.v) % M; return *this; }
  Mint& operator/=(const Mint& o) { return *this *= o.inv(); }
  Mint& operator%=(const Mint& o) { v %= o.v; return *this; }

  Mint& operator&=(const Mint& o) { v &= o.v; return *this; }
  Mint& operator|=(const Mint& o) { v |= o.v; return *this; }
  Mint& operator^=(const Mint& o) { v ^= o.v; return *this; }
  Mint& operator<<=(int s) { v = (v << s) % M; return *this; }
  Mint& operator>>=(int s) { v >>= s; return *this; }

  Mint operator+(const Mint& o) const { return Mint(*this) += o; }
  Mint operator-(const Mint& o) const { return Mint(*this) -= o; }
  Mint operator*(const Mint& o) const { return Mint(*this) *= o; }
  Mint operator/(const Mint& o) const { return Mint(*this) /= o; }
  Mint operator%(const Mint& o) const { return Mint(*this) %= o; }

  Mint operator&(const Mint& o) const { return Mint(*this) &= o; }
  Mint operator|(const Mint& o) const { return Mint(*this) |= o; }
  Mint operator^(const Mint& o) const { return Mint(*this) ^= o; }
  Mint operator<<(int s) const { return Mint(*this) <<= s; }
  Mint operator>>(int s) const { return Mint(*this) >>= s; }
  Mint operator~() const { return Mint(~v); }

  Mint operator+() const { return *this; }
  Mint operator-() const { return Mint(-v); }
  Mint& operator++() { return *this += 1; }
  Mint& operator--() { return *this -= 1; }
  Mint operator++(int) { Mint tmp = *this; *this += 1; return tmp; }
  Mint operator--(int) { Mint tmp = *this; *this -= 1; return tmp; }

  friend bool operator==(const Mint& a, const Mint& b) { return a.v == b.v; }
  friend bool operator!=(const Mint& a, const Mint& b) { return a.v != b.v; }
  friend bool operator<(const Mint& a, const Mint& b) { return a.v < b.v; }
  friend bool operator>(const Mint& a, const Mint& b) { return a.v > b.v; }
  friend bool operator<=(const Mint& a, const Mint& b) { return a.v <= b.v; }
  friend bool operator>=(const Mint& a, const Mint& b) { return a.v >= b.v; }
  friend std::ostream& operator<<(std::ostream& os, const Mint& n) { return os << n.v; }
  friend std::istream& operator>>(std::istream& is, Mint& n) { int64_t x; is >> x; n = Mint(x); return is; }

  static std::vector<Mint> fact, ifact;
  static void Prec(int64_t max_n) {
    fact.resize(max_n + 1), ifact.resize(max_n + 1);
    fact[0] = ifact[0] = 1;
    for (int64_t i = 1; i <= max_n; ++i) fact[i] = fact[i - 1] * i;
    ifact[max_n] = fact[max_n].inv();
    for (int64_t i = max_n - 1; i >= 1; --i) ifact[i] = ifact[i + 1] * (i + 1);
  }

  static Mint Fact(int64_t n) { return fact[n]; }
  static Mint invFact(int64_t n) { return ifact[n]; }
  static Mint nCr(int64_t n, int64_t r) { return r > n || r < 0 ? 0 : fact[n] * ifact[r] * ifact[n - r]; }
  static Mint nPr(int64_t n, int64_t r) { return r > n || r < 0 ? 0 : fact[n] * ifact[n - r]; }

  int64_t operator()() const { return v; }
  std::string to_string() const { return std::to_string(v); }

  static Mint gcd_extended(int64_t a, int64_t b, int64_t& x, int64_t& y) {
    if (b == 0) { x = 1; y = 0; return a; }
    int64_t x1, y1;
    Mint g = gcd_extended(b, a % b, x1, y1);
    x = y1;
    y = x1 - (a / b) * y1;
    return g;
  }
  static Mint mod_inv(int64_t a) {
    int64_t x, y;
    gcd_extended(a, M, x, y);
    return Mint((x % M + M) % M);
  }
};

template <int64_t M> std::vector<Mint<M>> Mint<M>::fact;
template <int64_t M> std::vector<Mint<M>> Mint<M>::ifact;

template <int64_t M> std::string to_string(const Mint<M>& number) { return std::to_string(number()); }
template <int64_t M> Mint<M> abs(const Mint<M>& number) { return number.v < 0 ? -number : number; }
template <int64_t M> Mint<M> max(const Mint<M>& a, const Mint<M>& b) { return (a.v > b.v) ? a : b; }
template <int64_t M> Mint<M> min(const Mint<M>& a, const Mint<M>& b) { return (a.v < b.v) ? a : b; }

const int64_t MOD = 1000000007;
using Z = Mint<MOD>;

void Sol(int Cs) {
  int n, k;
  cin >> n >> k;
  array<int, 2> cnt = {};
  for (int i = 0; i < n; i++) {
    int x;
    cin >> x;
    cnt[x] += 1;
  }
  if (cnt[1] < k) {
    cout << "0\n"; return;
  }

  Z res = 0;
  for(int i = 0; i <= cnt[1] - k; i++) {
    res += Z::nCr(cnt[1], i);
  }
  res *= Z::_pow(2, cnt[0]);
  cout << res - 1 << "\n";
}

signed main() {
  ios_base::sync_with_stdio(false);
  cin.tie(NULL);
  int Tc = 1;
  cin >> Tc;
  Z::Prec(1e4);
  for (int Cs = 1; Cs <= Tc; Cs++) {
    Sol(Cs);
  }
  return 0;
}

Information

Submit By
Type
Submission
Problem
P1094 Number of ways (Hard version)
Language
C++20 (G++ 13.2.0)
Submit At
2024-09-06 03:49:39
Judged At
2024-11-11 02:56:57
Judged By
Score
75
Total Time
15ms
Peak Memory
728.0 KiB