/ SeriousOJ /

Record Detail

Wrong Answer


  
# Status Time Cost Memory Cost
#1 Wrong Answer 2ms 1.793 MiB
#2 Wrong Answer 2ms 1.777 MiB

Code

#ifndef ATCODER_INTERNAL_MATH_HPP
#define ATCODER_INTERNAL_MATH_HPP 1
#include <utility>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
struct barrett {
    unsigned int _m;
    unsigned long long im;
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
    unsigned int umod() const { return _m; }
    unsigned int mul(unsigned int a, unsigned int b) const {
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;
    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b
        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }
        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_MATH_HPP
#ifndef ATCODER_INTERNAL_TYPE_TRAITS_HPP
#define ATCODER_INTERNAL_TYPE_TRAITS_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_INTERNAL_TYPE_TRAITS_HPP
#ifndef ATCODER_MODINT_HPP
#define ATCODER_MODINT_HPP 1
#include <cassert>
#include <numeric>
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
}  // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;
  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }
    unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;
  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }
    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }
    unsigned int val() const { return _v; }
    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }
    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }
    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }
    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }
  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
}  // namespace internal
}  // namespace atcoder
#endif  // ATCODER_MODINT_HPP
#ifndef COMMON_H
#define COMMON_H 1
#include <algorithm>
#include <cassert>
#include <climits>
#include <cmath>
#include <chrono>
#include <cstdio>
#include <cstring>
#include <deque>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <map>
#include <numeric>
#include <queue>
#include <set>
#include <sstream>
#include <stack>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include <random>
using namespace std;
#define rep(i, a, b) for (int i = a; i < (b); ++i)
#define all(x) begin(x), end(x)
#define szx(x) (int)(x).size()
using ll = long long;
using vi = vector<int>;
using pii = pair<int, int>;
constexpr int LOG2(int x)
{
    return 32 - __builtin_clz(x) - 1;
}
#endif // COMMON_H
#ifndef DEBUG_H
#define DEBUG_H 1
#ifndef CLown1331
#define debug(...) 0
#define ASSERT(...) 0
#define dbg(...) 0
#endif
#endif // DEBUG_H
#ifndef PolyHash_h
#define PolyHash_h 1
namespace library
{
constexpr unsigned long long mod = (1ULL << 61) - 1;
const unsigned long long seed = chrono::system_clock::now().time_since_epoch().count();
const unsigned long long polyhash_base = mt19937_64(seed)() % (mod / 3) + (mod / 3);
long long ModMul(unsigned long long a, unsigned long long b)
{
    unsigned long long l1 = (unsigned int)a, h1 = a >> 32, l2 = (unsigned int)b, h2 = b >> 32;
    unsigned long long l = l1 * l2, m = l1 * h2 + l2 * h1, h = h1 * h2;
    unsigned long long ret = (l & mod) + (l >> 61) + (h << 3) + (m >> 29) + (m << 35 >> 3) + 1;
    ret = (ret & mod) + (ret >> 61);
    ret = (ret & mod) + (ret >> 61);
    return ret - 1;
}
template <size_t MAXLEN> struct PolyHash
{
    vector<long long> pref;
#ifdef IMPLEMENT_REV_HASH
    vector<long long> suff;
#endif
    inline static unsigned long long polyhash_base_pow[MAXLEN];
    PolyHash()
    {
    }
    template <typename T> PolyHash(const vector<T> &ar)
    {
        if (!polyhash_base_pow[0])
            init();
        int n = ar.size();
        assert(n < MAXLEN);
        pref.resize(n + 3, 0);
        for (int i = 1; i <= n; i++)
        {
            pref[i] = ModMul(pref[i - 1], polyhash_base) + ar[i - 1] + 997;
            if (pref[i] >= mod)
                pref[i] -= mod;
        }
#ifdef IMPLEMENT_REV_HASH
        suff.resize(n + 3, 0);
        for (int i = n; i >= 1; i--)
        {
            suff[i] = ModMul(suff[i + 1], polyhash_base) + ar[i - 1] + 997;
            if (suff[i] >= mod)
                suff[i] -= mod;
        }
#endif
    }
    PolyHash(const char *str) : PolyHash(vector<char>(str, str + strlen(str)))
    {
    }
    unsigned long long GetHash(int l, int r)
    {
        long long h = pref[r + 1] - ModMul(polyhash_base_pow[r - l + 1], pref[l]);
        return h < 0 ? h + mod : h;
    }
#ifdef IMPLEMENT_REV_HASH
    unsigned long long ReverseHash(int l, int r)
    {
        long long h = suff[l + 1] - ModMul(polyhash_base_pow[r - l + 1], suff[r + 2]);
        return h < 0 ? h + mod : h;
    }
#endif
    unsigned long long GetHash(int l, int r, int x, int y)
    {
        return (ModMul(GetHash(l, r), polyhash_base_pow[y - x + 1]) + GetHash(x, y)) % mod;
    }
    void init()
    {
        polyhash_base_pow[0] = 1;
        for (int i = 1; i < MAXLEN; i++)
        {
            polyhash_base_pow[i] = ModMul(polyhash_base_pow[i - 1], polyhash_base);
        }
    }
};
} // namespace library
#endif
#ifndef solution_h
#define solution_h 1
namespace solution
{
const int sz = 2e5 + 105;
const int mod = 1e9 + 7;
const ll INF = 1e16;
const int N = 3e5 + 9;
/*
-> cnt contains the number of palindromic suffixes of the node
*/
struct PalindromicTree
{
    struct node
    {
        int nxt[26], len, st, en, link, cnt, oc;
    };
    string s;
    vector<node> t;
    int sz, last;
    PalindromicTree()
    {
    }
    PalindromicTree(string _s)
    {
        s = _s;
        int n = s.size();
        t.clear();
        t.resize(n + 9);
        sz = 2, last = 2;
        t[1].len = -1, t[1].link = 1;
        t[2].len = 0, t[2].link = 1;
    }
    int extend(int pos)
    { // returns 1 if it creates a new palindrome
        int cur = last, curlen = 0;
        int ch = s[pos] - 'a';
        while (1)
        {
            curlen = t[cur].len;
            if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
                break;
            cur = t[cur].link;
        }
        if (t[cur].nxt[ch])
        {
            last = t[cur].nxt[ch];
            t[last].oc++;
            return 0;
        }
        sz++;
        last = sz;
        t[sz].oc = 1;
        t[sz].len = t[cur].len + 2;
        t[cur].nxt[ch] = sz;
        t[sz].en = pos;
        t[sz].st = pos - t[sz].len + 1;
        if (t[sz].len == 1)
        {
            t[sz].link = 2;
            t[sz].cnt = 1;
            return 1;
        }
        while (1)
        {
            cur = t[cur].link;
            curlen = t[cur].len;
            if (pos - 1 - curlen >= 0 && s[pos - 1 - curlen] == s[pos])
            {
                t[sz].link = t[cur].nxt[ch];
                break;
            }
        }
        t[sz].cnt = 1 + t[t[sz].link].cnt;
        return 1;
    }
    void calc_occurrences()
    {
        for (int i = sz; i >= 3; i--)
            t[t[i].link].oc += t[i].oc;
    }
} et;
atcoder::modint1000000007 calc[300005], ans;
void process(int u)
{
    if (u != 1)
    {
        calc[u] = et.t[u].oc;
    }
    for (int i = 0; i < 26; i++)
    {
        int v = et.t[u].nxt[i];
        if (v)
        {
            process(v);
            calc[u] += calc[v];
        }
    }
}
void traverse(int u)
{
    for (int i = 0; i < 26; i++)
    {
        int v = et.t[u].nxt[i];
        if (v)
        {
            ans += calc[v] * (calc[1] - calc[v]);
            traverse(v);
        }
    }
}
void solve()
{
    int t;
    cin >> t;
    assert(t >= 1 && t <= 100);
    int total_n = 0;
    while (t--)
    {
        string s;
        cin >> s;
        et = PalindromicTree(s);
        for (int i = 0; i < s.size(); i++)
        {
            assert(s[i] >= 'a' && s[i] <= 'z');
            calc[i] = 0;
            et.extend(i);
        }
        assert(s.size() >= 1 && s.size() <= 300000);
        total_n += s.size();
        et.calc_occurrences();
        process(1);
        ans = 0;
        traverse(1);
        cout << ans.val() << endl;
    }
    assert(total_n <= 300000);
}
} // namespace solution
#endif // solution_h
#define _CRT_SECURE_NO_WARNINGS
int main()
{
    solution::solve();
    return 0;
}

Information

Submit By
Type
Submission
Problem
P1144 Palindromic Distance
Language
C++17 (G++ 13.2.0)
Submit At
2024-12-08 18:03:12
Judged At
2024-12-08 18:03:12
Judged By
Score
0
Total Time
2ms
Peak Memory
1.793 MiB