#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define bug(a) cout<< #a << " : " << a << endl;
#define bug2(a, b) cout << #a << " : " << a << " " << #b << " : " << b << endl;
const int N = 3e5 + 9;
const double inf = 1e100;
const double eps = 1e-9;
const double PI = acos((double)-1.0);
int sign(double x) { return (x > eps) - (x < -eps); }
struct PT {
double x, y;
PT() { x = 0, y = 0; }
PT(double x, double y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT operator + (const PT &a) const { return PT(x + a.x, y + a.y); }
PT operator - (const PT &a) const { return PT(x - a.x, y - a.y); }
PT operator * (const double a) const { return PT(x * a, y * a); }
friend PT operator * (const double &a, const PT &b) { return PT(a * b.x, a * b.y); }
PT operator / (const double a) const { return PT(x / a, y / a); }
bool operator == (PT a) const { return sign(a.x - x) == 0 && sign(a.y - y) == 0; }
bool operator != (PT a) const { return !(*this == a); }
bool operator < (PT a) const { return sign(a.x - x) == 0 ? y < a.y : x < a.x; }
bool operator > (PT a) const { return sign(a.x - x) == 0 ? y > a.y : x > a.x; }
double norm() { return sqrt(x * x + y * y); }
double norm2() { return x * x + y * y; }
PT perp() { return PT(-y, x); }
double arg() { return atan2(y, x); }
PT truncate(double r) { // returns a vector with norm r and having same direction
double k = norm();
if (!sign(k)) return *this;
r /= k;
return PT(x * r, y * r);
}
};
istream &operator >> (istream &in, PT &p) { return in >> p.x >> p.y; }
ostream &operator << (ostream &out, PT &p) { return out << "(" << p.x << "," << p.y << ")"; }
inline double dot(PT a, PT b) { return a.x * b.x + a.y * b.y; }
inline double dist2(PT a, PT b) { return dot(a - b, a - b); }
inline double dist(PT a, PT b) { return sqrt(dot(a - b, a - b)); }
inline double cross(PT a, PT b) { return a.x * b.y - a.y * b.x; }
inline double cross2(PT a, PT b, PT c) { return cross(b - a, c - a); }
inline int orientation(PT a, PT b, PT c) { return sign(cross(b - a, c - a)); }
PT perp(PT a) { return PT(-a.y, a.x); }
PT rotateccw90(PT a) { return PT(-a.y, a.x); }
PT rotatecw90(PT a) { return PT(a.y, -a.x); }
PT rotateccw(PT a, double t) { return PT(a.x * cos(t) - a.y * sin(t), a.x * sin(t) + a.y * cos(t)); }
PT rotatecw(PT a, double t) { return PT(a.x * cos(t) + a.y * sin(t), -a.x * sin(t) + a.y * cos(t)); }
double SQ(double x) { return x * x; }
double rad_to_deg(double r) { return (r * 180.0 / PI); }
double deg_to_rad(double d) { return (d * PI / 180.0); }
double get_angle(PT a, PT b) {
double costheta = dot(a, b) / a.norm() / b.norm();
return acos(max((double)-1.0, min((double)1.0, costheta)));
}
bool is_point_on_seg(PT a, PT b, PT p) {
if (fabs(cross(p - b, a - b)) < eps) {
if (p.x < min(a.x, b.x) - eps || p.x > max(a.x, b.x) + eps) return false;
if (p.y < min(a.y, b.y) - eps || p.y > max(a.y, b.y) + eps) return false;
return true;
}
return false;
}
bool is_point_on_polygon(vector<PT> &p, const PT& z) {
int n = p.size();
for (int i = 0; i < n; i++) {
if (is_point_on_seg(p[i], p[(i + 1) % n], z)) return 1;
}
return 0;
}
int winding_number(vector<PT> &p, const PT& z) { // O(n)
if (is_point_on_polygon(p, z)) return 1e9;
int n = p.size(), ans = 0;
for (int i = 0; i < n; ++i) {
int j = (i + 1) % n;
bool below = p[i].y < z.y;
if (below != (p[j].y < z.y)) {
auto orient = orientation(z, p[j], p[i]);
if (orient == 0) return 0;
if (below == (orient > 0)) ans += below ? 1 : -1;
}
}
return ans;
}
// -1 if strictly inside, 0 if on the polygon, 1 if strictly outside
int is_point_in_polygon(vector<PT> &p, const PT& z) { // O(n)
int k = winding_number(p, z);
return k == 1e9 ? 0 : k == 0 ? 1 : -1;
}
void solve(int cs){
int n;
cin >> n;
vector<PT> v(n);
for(int i = 0;i < n;i++){
cin >> v[i];
}
PT p;
cin >> p;
int x = is_point_in_polygon(v, p);
if(x == -1) cout << "YES\n";
else cout << "NO\n";
}
int main(){
ios_base::sync_with_stdio(false);cin.tie(0);
cout.tie(0);
int tc = 1;
// cin >> tc;
for(int cs = 1; cs <= tc; cs++){
solve(cs);
}
}