#ifdef ONPC
#include <sys/resource.h>
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wrange-loop-construct"
#pragma GCC diagnostic ignored "-Wsign-compare"
#endif
#include "bits/stdc++.h"
#include "ext/pb_ds/assoc_container.hpp"
using namespace std;
using namespace __gnu_pbds;
bool startmemory;
#define endln "\n"
#define EPSILON 1e-12
#define int long long
#define front_zero(n) __builtin_clzll(n)
#define back_zero(n) __builtin_ctzll(n)
#define total_one(n) __builtin_popcountll(n)
#ifdef ONPC
#include "Debug/debug.h"
#else
#define print(...) 42
#define printarr(...) 42
#endif
#define MULTI \
int _T; \
cin >> _T; \
while (_T--)
int test_cases = 1;
const int INF = 1e18; // infinity
const int mod = 1e9 + 7; // mod
const int base1 = 972663749; // base1
const int base2 = 998244353; // base2
const int mod1 = 1e9 + 7; // mod1
const int mod2 = 1e9 + 9; // mod2
const double pi = 4 * atan(1);
vector<int> dx = {-1, +1, +0, +0, +1, -1, +1, -1};
vector<int> dy = {+0, +0, +1, -1, +1, -1, -1, +1};
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
/////////////////////////////////////////////////////////////////////////////////////
template <class T>
bool ckmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; }
template <class T>
bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
template <class T>
using maxheap = priority_queue<T, vector<T>>;
template <class T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <class T>
using ordered_set = tree<T, null_type,
less<T>, rb_tree_tag,
tree_order_statistics_node_update>;
template <const int32_t MOD>
struct modint
{
int32_t value;
modint() = default;
modint(int32_t value_) : value(value_) {}
inline modint<MOD> operator+(modint<MOD> other) const
{
int32_t c = this->value + other.value;
return modint<MOD>(c >= MOD ? c - MOD : c);
}
inline modint<MOD> operator-(modint<MOD> other) const
{
int32_t c = this->value - other.value;
return modint<MOD>(c < 0 ? c + MOD : c);
}
inline modint<MOD> operator*(modint<MOD> other) const
{
int32_t c = (int64_t)this->value * other.value % MOD;
return modint<MOD>(c < 0 ? c + MOD : c);
}
inline modint<MOD> &operator+=(modint<MOD> other)
{
this->value += other.value;
if (this->value >= MOD)
this->value -= MOD;
return *this;
}
inline modint<MOD> &operator-=(modint<MOD> other)
{
this->value -= other.value;
if (this->value < 0)
this->value += MOD;
return *this;
}
inline modint<MOD> &operator*=(modint<MOD> other)
{
this->value = (int64_t)this->value * other.value % MOD;
if (this->value < 0)
this->value += MOD;
return *this;
}
inline modint<MOD> operator-() const { return modint<MOD>(this->value ? MOD - this->value : 0); }
modint<MOD> pow(uint64_t k) const
{
modint<MOD> x = *this, y = 1;
for (; k; k >>= 1)
{
if (k & 1)
y *= x;
x *= x;
}
return y;
}
modint<MOD> inv() const { return pow(MOD - 2); } // MOD must be a prime
inline modint<MOD> operator/(modint<MOD> other) const { return *this * other.inv(); }
inline modint<MOD> operator/=(modint<MOD> other) { return *this *= other.inv(); }
inline bool operator==(modint<MOD> other) const { return value == other.value; }
inline bool operator!=(modint<MOD> other) const { return value != other.value; }
inline bool operator<(modint<MOD> other) const { return value < other.value; }
inline bool operator>(modint<MOD> other) const { return value > other.value; }
};
template <int32_t MOD>
modint<MOD> operator*(int64_t value, modint<MOD> n) { return modint<MOD>(value) * n; }
template <int32_t MOD>
modint<MOD> operator*(int32_t value, modint<MOD> n) { return modint<MOD>(value % MOD) * n; }
template <int32_t MOD>
istream &operator>>(istream &in, modint<MOD> &n) { return in >> n.value; }
template <int32_t MOD>
ostream &operator<<(ostream &out, modint<MOD> n) { return out << n.value; }
void setIO(string s)
{
freopen((s + ".in").c_str(), "r", stdin);
freopen((s + ".out").c_str(), "w", stdout);
}
int modpower(int x, int n, int m)
{
if (n == 0)
return 1 % m;
int u = modpower(x, n / 2, m);
u = (u * u) % m;
if (n % 2 == 1)
u = (u * x) % m;
return u;
}
int power(int x, int n)
{
if (n == 0)
return 1;
int u = power(x, n / 2);
u = (u * u);
if (n % 2 == 1)
u = (u * x);
return u;
}
int modinverse(int i, int MOD)
{
if (i == 1)
return 1;
return (MOD - ((MOD / i) * modinverse(MOD % i, MOD)) % MOD + MOD) % MOD;
}
int lcm(int x1, int x2)
{
return ((x1 * x2) / __gcd(x1, x2));
}
bool isPowerOf2(int x)
{
return x > 0 && (x & (x - 1)) == 0;
}
void printVector(vector<int> &array, int startIndex = 0)
{
int sz = array.size();
if (sz == 0)
return;
sz += startIndex;
for (int i = startIndex; i < sz - 1; i++)
{
cout << array[i] << " ";
}
cout << array[sz - 1] << endl;
}
void printArray(int array[], int sz, int startIndex = 0)
{
sz += startIndex;
for (int i = startIndex; i < sz - 1; i++)
{
cout << array[i] << " ";
}
cout << array[sz - 1] << "\n";
}
template <typename T, typename T_iterable>
vector<pair<T, int>> run_length_encoding(const T_iterable &items)
{
vector<pair<T, int>> runs;
T previous;
int count = 0;
for (const T &item : items)
if (item == previous)
{
count++;
}
else
{
if (count > 0)
runs.emplace_back(previous, count);
previous = item;
count = 1;
}
if (count > 0)
runs.emplace_back(previous, count);
return runs;
}
struct BIT
{
int size;
vector<int> bit;
BIT(int n) : size(n + 4), bit(n + 10) {}
void update(int x, int v)
{
for (; x <= size; x += x & (-x))
bit[x] += v;
}
int query(int b)
{
int result = 0;
for (; b > 0; b -= b & (-b))
result += bit[b];
return result;
}
int query(int l, int r)
{
return query(r) - query(l - 1);
}
};
int rand(int low, int high)
{
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<int> distribution(low, high);
return distribution(gen);
}
int sumton(int x)
{
double n = (-1 + sqrt(1 + 8 * x)) / 2;
int nn = n;
if ((n - nn) > 1e-6)
return -1;
else
return nn;
}
int rangesum(int l, int r)
{
return (r - l + 1) * (r + l) / 2;
}
//////////////////////////////////////----main-function----///////////////////////////////////////////
//====================================================================================================
//====================================================================================================
const int N = 1e5 + 5;
const int K = 1e7 + 5;
// FUV
char ch;
string s, s1, s2;
int n, m, b, a, c, d, e, f, l, r, t, x, y, z, p, q, k, u, v, i, w, h;
// My Defination
// https://cses.fi/problemset/task/2413
// https://cses.fi/problemset/task/1744
// https://cses.fi/problemset/task/1653
// https://cses.fi/problemset/task/2181
const int magic = 500;
using z1 = modint<mod>;
// Sorting Function to sort points
bool cmp(pair<int, int> &a,
pair<int, int> &b)
{
if (a.first == b.first)
return a.second < b.second;
return a.first < b.first;
}
// Function To Check Clockwise
// Orientation
struct Point
{
int x, y;
Point(int _x, int _y) : x(_x), y(_y) {}
};
// To sort the points lexicographically
bool compare(Point a, Point b)
{
return (a.x == b.x) ? a.y < b.y : a.x < b.x;
}
// Cross product of vectors OA and OB
// A positive cross product indicates a counter-clockwise turn, 0 indicates a collinear point, and negative indicates a clockwise turn
int cross(Point O, Point A, Point B)
{
return (A.x - O.x) * (B.y - O.y) - (A.y - O.y) * (B.x - O.x);
}
// Convex Hull using Andrew's monotone chain algorithm
vector<Point> convexHull(vector<Point> &points)
{
int n = points.size();
sort(points.begin(), points.end(), compare);
vector<Point> hull;
// Lower hull
for (int i = 0; i < n; i++)
{
while (hull.size() >= 2 && cross(hull[hull.size() - 2], hull[hull.size() - 1], points[i]) <= 0)
hull.pop_back();
hull.push_back(points[i]);
}
// Upper hull
int t = hull.size() + 1;
for (int i = n - 2; i >= 0; i--)
{
while (hull.size() >= t && cross(hull[hull.size() - 2], hull[hull.size() - 1], points[i]) <= 0)
hull.pop_back();
hull.push_back(points[i]);
}
hull.pop_back(); // Remove the last point because it's the same as the first one
return hull;
}
// Function to check if a point is inside the polygon (Convex Hull)
bool isInsidePolygon(vector<Point> &polygon, Point p)
{
int n = polygon.size();
int count = 0;
for (int i = 0; i < n; i++)
{
int j = (i + 1) % n;
if (p.y > polygon[i].y && p.y <= polygon[j].y || p.y > polygon[j].y && p.y <= polygon[i].y)
{
if (p.x <= (polygon[j].x - polygon[i].x) * (p.y - polygon[i].y) / (polygon[j].y - polygon[i].y) + polygon[i].x)
{
count++;
}
}
}
return count % 2 == 1;
}
// https://www.geeksforgeeks.org/check-if-the-given-point-lies-inside-given-n-points-of-a-convex-polygon/
void pre_process()
{
}
void solve_the_problem(int test_case)
{
/*
Please check the value of N :(
Please read the problem again before coding !
*/
cin >> n;
vector<pair<int, int>> tmp;
vector<Point> points;
// Input points
for (int i = 0; i < n; i++)
{
cin >> x >> y;
tmp.push_back({x, y});
points.push_back(Point(x, y));
}
cin >> x >> y;
Point checkPoint(x, y);
vector<Point> hull = convexHull(points);
if (isInsidePolygon(hull, checkPoint))
{
cout << "YES" << endl;
}
else
{
cout << "NO" << endl;
}
}
bool endmemory;
signed main()
{
#ifdef ONPC
const rlim_t stackSize = 1024 * 1024 * 1024; // 1 GB
struct rlimit rl;
rl.rlim_cur = stackSize;
rl.rlim_max = stackSize;
#endif
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cout << fixed << setprecision(14);
#ifdef ONPC
char name[] = "input.txt";
freopen(name, "r", stdin);
freopen("output.txt", "w", stdout);
#endif
pre_process();
// cin >> test_cases;
for (int test_case = 1; test_case <= test_cases; test_case++)
{
// cout << "Case " << test_case << ":\n";
solve_the_problem(test_case);
#ifdef ONPC
// cout << "================================================================" << endln;
#endif
}
#ifdef ONPC
if (setrlimit(RLIMIT_STACK, &rl) != 0)
std::cerr << "Error setting stack size: " << strerror(errno) << std::endl;
cout << "Stack size: " << stackSize / 1024 / 1024 / 1024 << "GB \n";
cout << "Execution Time : " << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
cout << "Execution Memory : " << (&endmemory - &startmemory) / (1024 * 1024) << "MB\n";
#endif
return 0;
}