#include <bits/stdc++.h>
using namespace std;
typedef int64_t ll;
#ifdef LOCAL
#include "debug.hpp"
#else
#define debug(...) 42
#endif
const double inf = 1e100;
const double eps = 1e-9;
const double PI = acos((double)-1.0);
ll sign(double x) { return (x > eps) - (x < -eps); }
struct PT {
double x, y;
PT() { x = 0, y = 0; }
PT(double x, double y) : x(x), y(y) {}
PT(const PT &p) : x(p.x), y(p.y) {}
PT operator+(const PT &a) const { return PT(x + a.x, y + a.y); }
PT operator-(const PT &a) const { return PT(x - a.x, y - a.y); }
PT operator*(const double a) const { return PT(x * a, y * a); }
friend PT operator*(const double &a, const PT &b) { return PT(a * b.x, a * b.y); }
PT operator/(const double a) const { return PT(x / a, y / a); }
bool operator==(PT a) const { return sign(a.x - x) == 0 && sign(a.y - y) == 0; }
bool operator!=(PT a) const { return !(*this == a); }
bool operator<(PT a) const { return sign(a.x - x) == 0 ? y < a.y : x < a.x; }
bool operator>(PT a) const { return sign(a.x - x) == 0 ? y > a.y : x > a.x; }
double norm() { return sqrt(x * x + y * y); }
double norm2() { return x * x + y * y; }
PT perp() { return PT(-y, x); }
double arg() { return atan2(y, x); }
PT truncate(double r) { // returns a vector with norm r and having same direction
double k = norm();
if (!sign(k))
return *this;
r /= k;
return PT(x * r, y * r);
}
};
inline double cross(PT a, PT b) { return a.x * b.y - a.y * b.x; }
inline ll orientation(PT a, PT b, PT c) { return sign(cross(b - a, c - a)); }
// -1 if strictly inside, 0 if on the polygon, 1 if strictly outside
// it must be strictly convex, otherwise make it strictly convex first
ll is_point_in_convex(vector<PT> &p, const PT &x) { // O(log n)
ll n = p.size();
assert(n >= 3);
ll a = orientation(p[0], p[1], x), b = orientation(p[0], p[n - 1], x);
if (a < 0 || b > 0)
return 1;
for (ll i = 0; i < p.size() - 1; i++) {
if (orientation(p[i], p[i + 1], x) == 0 && min(p[i].x, p[i + 1].x) <= x.x && max(p[i].x, p[i + 1].x) >= x.x &&
min(p[i].y, p[i + 1].y) <= x.y && max(p[i].y, p[i + 1].y) >= x.y)
return 0;
}
return -1;
}
int32_t main() {
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ll n;
cin >> n;
vector<PT> points;
for (ll i = 1; i <= n; i++) {
double x, y;
cin >> x >> y;
points.push_back(PT(x, y));
}
points.push_back(points.front());
double x, y;
cin >> x >> y;
if (is_point_in_convex(points, PT(x, y)) == -1) {
cout << "YES\n";
} else {
cout << "NO\n";
}
}