// https://judge.eluminatis-of-lu.com/contest/676ffd92569fb90008aac7da/1119
use crate::algo_lib::collections::dsu::DSU;
use crate::algo_lib::collections::fx_hash_map::FxHashSet;
use crate::algo_lib::collections::iter_ext::iter_copied::ItersCopied;
use crate::algo_lib::collections::vec_ext::inc_dec::IncDec;
use crate::algo_lib::io::input::Input;
use crate::algo_lib::io::output::Output;
use crate::algo_lib::misc::test_type::TaskType;
use crate::algo_lib::misc::test_type::TestType;
type PreCalc = ();
fn solve(input: &mut Input, out: &mut Output, _test_case: usize, _data: &mut PreCalc) {
let n = input.read_size();
let q = input.read_size();
let a = input.read_size_vec(n).dec();
let edges = input.read_size_pair_vec(q).dec();
let mut dsu = DSU::new(n);
for (u, v) in edges {
dsu.union(u, v);
}
let sets = dsu.parts();
let mut ans = 0;
for part in sets {
let set = part.copy_iter().collect::<FxHashSet<_>>();
for i in part {
if set.contains(&a[i]) {
ans += 1;
}
}
}
out.print_line(ans);
}
pub static TEST_TYPE: TestType = TestType::MultiNumber;
pub static TASK_TYPE: TaskType = TaskType::Classic;
pub(crate) fn run(mut input: Input, mut output: Output) -> bool {
let mut pre_calc = ();
match TEST_TYPE {
TestType::Single => solve(&mut input, &mut output, 1, &mut pre_calc),
TestType::MultiNumber => {
let t = input.read();
for i in 1..=t {
solve(&mut input, &mut output, i, &mut pre_calc);
}
}
TestType::MultiEof => {
let mut i = 1;
while input.peek().is_some() {
solve(&mut input, &mut output, i, &mut pre_calc);
i += 1;
}
}
}
output.flush();
match TASK_TYPE {
TaskType::Classic => input.is_empty(),
TaskType::Interactive => true,
}
}
fn main() {
let mut sin = std::io::stdin();
let input = crate::algo_lib::io::input::Input::new(&mut sin);
let mut stdout = std::io::stdout();
let output = crate::algo_lib::io::output::Output::new(&mut stdout);
run(input, output);
}
pub mod algo_lib {
pub mod collections {
pub mod dsu {
use crate::algo_lib::collections::slice_ext::bounds::Bounds;
use crate::algo_lib::collections::slice_ext::indices::Indices;
use std::cell::Cell;
#[derive(Clone)]
pub struct DSU {
id: Vec<Cell<i32>>,
count: usize,
}
impl DSU {
pub fn new(n: usize) -> Self {
Self {
id: vec![Cell::new(- 1); n],
count: n,
}
}
pub fn size(&self, i: usize) -> usize {
(-self.id[self.find(i)].get()) as usize
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> usize {
self.id.len()
}
pub fn iter(&self) -> impl Iterator<Item = usize> + '_ {
self.id
.iter()
.enumerate()
.filter_map(|(i, id)| if id.get() < 0 { Some(i) } else { None })
}
pub fn set_count(&self) -> usize {
self.count
}
pub fn union(&mut self, mut a: usize, mut b: usize) -> bool {
a = self.find(a);
b = self.find(b);
if a == b {
false
} else {
self.id[a].replace(self.id[a].get() + self.id[b].get());
self.id[b].replace(a as i32);
self.count -= 1;
true
}
}
pub fn find(&self, i: usize) -> usize {
if self.id[i].get() >= 0 {
let res = self.find(self.id[i].get() as usize);
self.id[i].replace(res as i32);
res
} else {
i
}
}
pub fn clear(&mut self) {
self.count = self.id.len();
self.id.fill(Cell::new(-1));
}
pub fn parts(&self) -> Vec<Vec<usize>> {
let roots: Vec<_> = self.iter().collect();
let mut res = vec![Vec::new(); roots.len()];
for i in self.id.indices() {
res[roots.as_slice().bin_search(&self.find(i)).unwrap()].push(i);
}
res
}
}
}
pub mod fx_hash_map {
use std::cell::Cell;
use std::convert::TryInto;
use std::time::SystemTime;
use std::{
collections::{HashMap, HashSet},
hash::{BuildHasherDefault, Hasher},
ops::BitXor,
};
pub type FxHashMap<K, V> = HashMap<K, V, BuildHasherDefault<FxHasher>>;
pub type FxHashSet<V> = HashSet<V, BuildHasherDefault<FxHasher>>;
#[derive(Default)]
pub struct FxHasher {
hash: usize,
}
thread_local! {
static K : Cell < usize > = Cell::new(((SystemTime::UNIX_EPOCH.elapsed().unwrap()
.as_nanos().wrapping_mul(2) + 1) & 0xFFFFFFFFFFFFFFFF) as usize)
}
impl FxHasher {
#[inline]
fn add_to_hash(&mut self, i: usize) {
self.hash = self.hash.rotate_left(5).bitxor(i).wrapping_mul(K.get());
}
}
impl Hasher for FxHasher {
#[inline]
fn write(&mut self, mut bytes: &[u8]) {
let read_usize = |bytes: &[u8]| u64::from_ne_bytes(
bytes[..8].try_into().unwrap(),
);
let mut hash = FxHasher { hash: self.hash };
while bytes.len() >= 8 {
hash.add_to_hash(read_usize(bytes) as usize);
bytes = &bytes[8..];
}
if bytes.len() >= 4 {
hash.add_to_hash(
u32::from_ne_bytes(bytes[..4].try_into().unwrap()) as usize,
);
bytes = &bytes[4..];
}
if bytes.len() >= 2 {
hash.add_to_hash(
u16::from_ne_bytes(bytes[..2].try_into().unwrap()) as usize,
);
bytes = &bytes[2..];
}
if !bytes.is_empty() {
hash.add_to_hash(bytes[0] as usize);
}
self.hash = hash.hash;
}
#[inline]
fn write_u8(&mut self, i: u8) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u16(&mut self, i: u16) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u32(&mut self, i: u32) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_u64(&mut self, i: u64) {
self.add_to_hash(i as usize);
}
#[inline]
fn write_usize(&mut self, i: usize) {
self.add_to_hash(i);
}
#[inline]
fn finish(&self) -> u64 {
self.hash as u64
}
}
}
pub mod iter_ext {
pub mod iter_copied {
use std::iter::{
Chain, Copied, Enumerate, Filter, Map, Rev, Skip, StepBy, Sum, Take, Zip,
};
pub trait ItersCopied<'a, T: 'a + Copy>: Sized + 'a
where
&'a Self: IntoIterator<Item = &'a T>,
{
fn copy_iter(&'a self) -> Copied<<&'a Self as IntoIterator>::IntoIter> {
self.into_iter().copied()
}
fn copy_enumerate(
&'a self,
) -> Enumerate<Copied<<&'a Self as IntoIterator>::IntoIter>> {
self.copy_iter().enumerate()
}
fn copy_rev(&'a self) -> Rev<Copied<<&'a Self as IntoIterator>::IntoIter>>
where
Copied<<&'a Self as IntoIterator>::IntoIter>: DoubleEndedIterator,
{
self.copy_iter().rev()
}
fn copy_skip(
&'a self,
n: usize,
) -> Skip<Copied<<&'a Self as IntoIterator>::IntoIter>> {
self.copy_iter().skip(n)
}
fn copy_take(
&'a self,
n: usize,
) -> Take<Copied<<&'a Self as IntoIterator>::IntoIter>> {
self.copy_iter().take(n)
}
fn copy_chain<V>(
&'a self,
chained: &'a V,
) -> Chain<
Copied<<&'a Self as IntoIterator>::IntoIter>,
Copied<<&'a V as IntoIterator>::IntoIter>,
>
where
&'a V: IntoIterator<Item = &'a T>,
{
self.copy_iter().chain(chained.into_iter().copied())
}
fn copy_zip<V>(
&'a self,
other: &'a V,
) -> Zip<
Copied<<&'a Self as IntoIterator>::IntoIter>,
Copied<<&'a V as IntoIterator>::IntoIter>,
>
where
&'a V: IntoIterator<Item = &'a T>,
{
self.copy_iter().zip(other.into_iter().copied())
}
fn copy_max(&'a self) -> T
where
T: Ord,
{
self.copy_iter().max().unwrap()
}
fn copy_max_by_key<B, F>(&'a self, f: F) -> T
where
F: FnMut(&T) -> B,
B: Ord,
{
self.copy_iter().max_by_key(f).unwrap()
}
fn copy_min(&'a self) -> T
where
T: Ord,
{
self.copy_iter().min().unwrap()
}
fn copy_min_by_key<B, F>(&'a self, f: F) -> T
where
F: FnMut(&T) -> B,
B: Ord,
{
self.copy_iter().min_by_key(f).unwrap()
}
fn copy_sum(&'a self) -> T
where
T: Sum<T>,
{
self.copy_iter().sum()
}
fn copy_map<F, U>(
&'a self,
f: F,
) -> Map<Copied<<&'a Self as IntoIterator>::IntoIter>, F>
where
F: FnMut(T) -> U,
{
self.copy_iter().map(f)
}
fn copy_all(&'a self, f: impl FnMut(T) -> bool) -> bool {
self.copy_iter().all(f)
}
fn copy_any(&'a self, f: impl FnMut(T) -> bool) -> bool {
self.copy_iter().any(f)
}
fn copy_step_by(
&'a self,
step: usize,
) -> StepBy<Copied<<&'a Self as IntoIterator>::IntoIter>> {
self.copy_iter().step_by(step)
}
fn copy_filter<F: FnMut(&T) -> bool>(
&'a self,
f: F,
) -> Filter<Copied<<&'a Self as IntoIterator>::IntoIter>, F> {
self.copy_iter().filter(f)
}
fn copy_fold<Acc, F>(&'a self, init: Acc, f: F) -> Acc
where
F: FnMut(Acc, T) -> Acc,
{
self.copy_iter().fold(init, f)
}
fn copy_reduce<F>(&'a self, f: F) -> Option<T>
where
F: FnMut(T, T) -> T,
{
self.copy_iter().reduce(f)
}
fn copy_position<P>(&'a self, predicate: P) -> Option<usize>
where
P: FnMut(T) -> bool,
{
self.copy_iter().position(predicate)
}
fn copy_find(&'a self, val: T) -> Option<usize>
where
T: PartialEq,
{
self.copy_iter().position(|x| x == val)
}
fn copy_count(&'a self, val: T) -> usize
where
T: PartialEq,
{
self.copy_iter().filter(|&x| x == val).count()
}
}
impl<'a, U: 'a, T: 'a + Copy> ItersCopied<'a, T> for U
where
&'a U: IntoIterator<Item = &'a T>,
{}
}
}
pub mod slice_ext {
pub mod bounds {
pub trait Bounds<T: PartialOrd> {
fn lower_bound(&self, el: &T) -> usize;
fn upper_bound(&self, el: &T) -> usize;
fn bin_search(&self, el: &T) -> Option<usize>;
fn more(&self, el: &T) -> usize;
fn more_or_eq(&self, el: &T) -> usize;
fn less(&self, el: &T) -> usize {
self.lower_bound(el)
}
fn less_or_eq(&self, el: &T) -> usize {
self.upper_bound(el)
}
}
impl<T: PartialOrd> Bounds<T> for [T] {
fn lower_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] < el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn upper_bound(&self, el: &T) -> usize {
let mut left = 0;
let mut right = self.len();
while left < right {
let mid = left + ((right - left) >> 1);
if &self[mid] <= el {
left = mid + 1;
} else {
right = mid;
}
}
left
}
fn bin_search(&self, el: &T) -> Option<usize> {
let at = self.lower_bound(el);
if at == self.len() || &self[at] != el { None } else { Some(at) }
}
fn more(&self, el: &T) -> usize {
self.len() - self.upper_bound(el)
}
fn more_or_eq(&self, el: &T) -> usize {
self.len() - self.lower_bound(el)
}
}
}
pub mod indices {
use std::ops::Range;
pub trait Indices {
fn indices(&self) -> Range<usize>;
}
impl<T> Indices for [T] {
fn indices(&self) -> Range<usize> {
0..self.len()
}
}
}
}
pub mod vec_ext {
pub mod default {
pub fn default_vec<T: Default>(len: usize) -> Vec<T> {
let mut v = Vec::with_capacity(len);
for _ in 0..len {
v.push(T::default());
}
v
}
}
pub mod inc_dec {
use crate::algo_lib::numbers::num_traits::algebra::{AdditionMonoidWithSub, One};
pub trait IncDec {
#[must_use]
fn inc(self) -> Self;
#[must_use]
fn dec(self) -> Self;
}
impl<T: AdditionMonoidWithSub + One> IncDec for T {
fn inc(self) -> Self {
self + T::one()
}
fn dec(self) -> Self {
self - T::one()
}
}
impl<T: AdditionMonoidWithSub + One> IncDec for Vec<T> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|i| *i += T::one());
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|i| *i -= T::one());
self
}
}
impl<T: AdditionMonoidWithSub + One> IncDec for Vec<Vec<T>> {
fn inc(mut self) -> Self {
self.iter_mut().for_each(|v| v.iter_mut().for_each(|i| *i += T::one()));
self
}
fn dec(mut self) -> Self {
self.iter_mut().for_each(|v| v.iter_mut().for_each(|i| *i -= T::one()));
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec
for Vec<(T, U)> {
fn inc(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V> IncDec
for Vec<(T, U, V)> {
fn inc(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, _)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, _)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W> IncDec
for Vec<(T, U, V, W)> {
fn inc(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One, V, W, X> IncDec
for Vec<(T, U, V, W, X)> {
fn inc(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, ..)| {
*i += T::one();
*j += U::one();
});
self
}
fn dec(mut self) -> Self {
self.iter_mut()
.for_each(|(i, j, ..)| {
*i -= T::one();
*j -= U::one();
});
self
}
}
impl<T: AdditionMonoidWithSub + One, U: AdditionMonoidWithSub + One> IncDec for (T, U) {
fn inc(mut self) -> Self {
self.0 += T::one();
self.1 += U::one();
self
}
fn dec(mut self) -> Self {
self.0 -= T::one();
self.1 -= U::one();
self
}
}
}
}
}
pub mod io {
pub mod input {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::io::Read;
use std::mem::MaybeUninit;
pub struct Input<'s> {
input: &'s mut (dyn Read + Send),
buf: Vec<u8>,
at: usize,
buf_read: usize,
eol: bool,
}
macro_rules! read_impl {
($t:ty, $read_name:ident, $read_vec_name:ident) => {
pub fn $read_name (& mut self) -> $t { self.read() } pub fn $read_vec_name (& mut
self, len : usize) -> Vec <$t > { self.read_vec(len) }
};
($t:ty, $read_name:ident, $read_vec_name:ident, $read_pair_vec_name:ident) => {
read_impl!($t, $read_name, $read_vec_name); pub fn $read_pair_vec_name (& mut
self, len : usize) -> Vec < ($t, $t) > { self.read_vec(len) }
};
}
impl<'s> Input<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(input: &'s mut (dyn Read + Send)) -> Self {
Self {
input,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
buf_read: 0,
eol: true,
}
}
pub fn new_with_size(input: &'s mut (dyn Read + Send), buf_size: usize) -> Self {
Self {
input,
buf: default_vec(buf_size),
at: 0,
buf_read: 0,
eol: true,
}
}
pub fn get(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
self.at += 1;
if res == b'\r' {
self.eol = true;
if self.refill_buffer() && self.buf[self.at] == b'\n' {
self.at += 1;
}
return Some(b'\n');
}
self.eol = res == b'\n';
Some(res)
} else {
None
}
}
pub fn peek(&mut self) -> Option<u8> {
if self.refill_buffer() {
let res = self.buf[self.at];
Some(if res == b'\r' { b'\n' } else { res })
} else {
None
}
}
pub fn skip_whitespace(&mut self) {
while let Some(b) = self.peek() {
if !b.is_ascii_whitespace() {
return;
}
self.get();
}
}
pub fn next_token(&mut self) -> Option<Vec<u8>> {
self.skip_whitespace();
let mut res = Vec::new();
while let Some(c) = self.get() {
if c.is_ascii_whitespace() {
break;
}
res.push(c);
}
if res.is_empty() { None } else { Some(res) }
}
pub fn is_exhausted(&mut self) -> bool {
self.peek().is_none()
}
pub fn is_empty(&mut self) -> bool {
self.skip_whitespace();
self.is_exhausted()
}
pub fn read<T: Readable>(&mut self) -> T {
T::read(self)
}
pub fn read_vec<T: Readable>(&mut self, size: usize) -> Vec<T> {
let mut res = Vec::with_capacity(size);
for _ in 0..size {
res.push(self.read());
}
res
}
pub fn read_char(&mut self) -> u8 {
self.skip_whitespace();
self.get().unwrap()
}
read_impl!(u32, read_unsigned, read_unsigned_vec);
read_impl!(u64, read_u64, read_u64_vec);
read_impl!(usize, read_size, read_size_vec, read_size_pair_vec);
read_impl!(i32, read_int, read_int_vec, read_int_pair_vec);
read_impl!(i64, read_long, read_long_vec, read_long_pair_vec);
read_impl!(i128, read_i128, read_i128_vec);
fn refill_buffer(&mut self) -> bool {
if self.at == self.buf_read {
self.at = 0;
self.buf_read = self.input.read(&mut self.buf).unwrap();
self.buf_read != 0
} else {
true
}
}
pub fn is_eol(&self) -> bool {
self.eol
}
}
pub trait Readable {
fn read(input: &mut Input) -> Self;
}
impl Readable for u8 {
fn read(input: &mut Input) -> Self {
input.read_char()
}
}
impl<T: Readable> Readable for Vec<T> {
fn read(input: &mut Input) -> Self {
let size = input.read();
input.read_vec(size)
}
}
impl<T: Readable, const SIZE: usize> Readable for [T; SIZE] {
fn read(input: &mut Input) -> Self {
unsafe {
let mut res = MaybeUninit::<[T; SIZE]>::uninit();
for i in 0..SIZE {
let ptr: *mut T = (*res.as_mut_ptr()).as_mut_ptr();
ptr.add(i).write(input.read::<T>());
}
res.assume_init()
}
}
}
macro_rules! read_integer {
($($t:ident)+) => {
$(impl Readable for $t { fn read(input : & mut Input) -> Self { input
.skip_whitespace(); let mut c = input.get().unwrap(); let sgn = match c { b'-' =>
{ c = input.get().unwrap(); true } b'+' => { c = input.get().unwrap(); false } _
=> false, }; let mut res = 0; loop { assert!(c.is_ascii_digit()); res *= 10; let
d = (c - b'0') as $t; if sgn { res -= d; } else { res += d; } match input.get() {
None => break, Some(ch) => { if ch.is_ascii_whitespace() { break; } else { c =
ch; } } } } res } })+
};
}
read_integer!(i8 i16 i32 i64 i128 isize u16 u32 u64 u128 usize);
macro_rules! tuple_readable {
($($name:ident)+) => {
impl <$($name : Readable),+> Readable for ($($name,)+) { fn read(input : & mut
Input) -> Self { ($($name ::read(input),)+) } }
};
}
tuple_readable! {
T
}
tuple_readable! {
T U
}
tuple_readable! {
T U V
}
tuple_readable! {
T U V X
}
tuple_readable! {
T U V X Y
}
tuple_readable! {
T U V X Y Z
}
tuple_readable! {
T U V X Y Z A
}
tuple_readable! {
T U V X Y Z A B
}
tuple_readable! {
T U V X Y Z A B C
}
tuple_readable! {
T U V X Y Z A B C D
}
tuple_readable! {
T U V X Y Z A B C D E
}
tuple_readable! {
T U V X Y Z A B C D E F
}
impl Read for Input<'_> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
if self.at == self.buf_read {
self.input.read(buf)
} else {
let mut i = 0;
while i < buf.len() && self.at < self.buf_read {
buf[i] = self.buf[self.at];
i += 1;
self.at += 1;
}
Ok(i)
}
}
}
}
pub mod output {
use crate::algo_lib::collections::vec_ext::default::default_vec;
use std::cmp::Reverse;
use std::io::{stderr, Stderr, Write};
#[derive(Copy, Clone)]
pub enum BoolOutput {
YesNo,
YesNoCaps,
PossibleImpossible,
Custom(&'static str, &'static str),
}
impl BoolOutput {
pub fn output(&self, output: &mut Output, val: bool) {
(if val { self.yes() } else { self.no() }).write(output);
}
fn yes(&self) -> &str {
match self {
BoolOutput::YesNo => "Yes",
BoolOutput::YesNoCaps => "YES",
BoolOutput::PossibleImpossible => "Possible",
BoolOutput::Custom(yes, _) => yes,
}
}
fn no(&self) -> &str {
match self {
BoolOutput::YesNo => "No",
BoolOutput::YesNoCaps => "NO",
BoolOutput::PossibleImpossible => "Impossible",
BoolOutput::Custom(_, no) => no,
}
}
}
pub struct Output<'s> {
output: &'s mut dyn Write,
buf: Vec<u8>,
at: usize,
auto_flush: bool,
bool_output: BoolOutput,
precision: Option<usize>,
separator: u8,
}
impl<'s> Output<'s> {
const DEFAULT_BUF_SIZE: usize = 4096;
pub fn new(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: false,
bool_output: BoolOutput::YesNoCaps,
precision: None,
separator: b' ',
}
}
pub fn new_with_auto_flush(output: &'s mut dyn Write) -> Self {
Self {
output,
buf: default_vec(Self::DEFAULT_BUF_SIZE),
at: 0,
auto_flush: true,
bool_output: BoolOutput::YesNoCaps,
precision: None,
separator: b' ',
}
}
pub fn flush(&mut self) {
if self.at != 0 {
self.output.write_all(&self.buf[..self.at]).unwrap();
self.output.flush().unwrap();
self.at = 0;
}
}
pub fn print<T: Writable>(&mut self, s: T) {
s.write(self);
self.maybe_flush();
}
pub fn print_line<T: Writable>(&mut self, s: T) {
self.print(s);
self.put(b'\n');
self.maybe_flush();
}
pub fn put(&mut self, b: u8) {
self.buf[self.at] = b;
self.at += 1;
if self.at == self.buf.len() {
self.flush();
}
}
pub fn maybe_flush(&mut self) {
if self.auto_flush {
self.flush();
}
}
pub fn print_per_line<T: Writable>(&mut self, arg: &[T]) {
self.print_per_line_iter(arg.iter());
}
pub fn print_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
let mut first = true;
for e in iter {
if first {
first = false;
} else {
self.put(self.separator);
}
e.write(self);
}
}
pub fn print_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
self.print_iter(iter);
self.put(b'\n');
}
pub fn print_per_line_iter<T: Writable, I: Iterator<Item = T>>(&mut self, iter: I) {
for e in iter {
e.write(self);
self.put(b'\n');
}
}
pub fn set_bool_output(&mut self, bool_output: BoolOutput) {
self.bool_output = bool_output;
}
pub fn set_precision(&mut self, precision: usize) {
self.precision = Some(precision);
}
pub fn reset_precision(&mut self) {
self.precision = None;
}
pub fn get_precision(&self) -> Option<usize> {
self.precision
}
pub fn separator(&self) -> u8 {
self.separator
}
pub fn set_separator(&mut self, separator: u8) {
self.separator = separator;
}
}
impl Write for Output<'_> {
fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
let mut start = 0usize;
let mut rem = buf.len();
while rem > 0 {
let len = (self.buf.len() - self.at).min(rem);
self.buf[self.at..self.at + len].copy_from_slice(&buf[start..start + len]);
self.at += len;
if self.at == self.buf.len() {
self.flush();
}
start += len;
rem -= len;
}
self.maybe_flush();
Ok(buf.len())
}
fn flush(&mut self) -> std::io::Result<()> {
self.flush();
Ok(())
}
}
pub trait Writable {
fn write(&self, output: &mut Output);
}
impl Writable for &str {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for String {
fn write(&self, output: &mut Output) {
output.write_all(self.as_bytes()).unwrap();
}
}
impl Writable for char {
fn write(&self, output: &mut Output) {
output.put(*self as u8);
}
}
impl Writable for u8 {
fn write(&self, output: &mut Output) {
output.put(*self);
}
}
impl<T: Writable> Writable for [T] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable, const N: usize> Writable for [T; N] {
fn write(&self, output: &mut Output) {
output.print_iter(self.iter());
}
}
impl<T: Writable + ?Sized> Writable for &T {
fn write(&self, output: &mut Output) {
T::write(self, output)
}
}
impl<T: Writable> Writable for Vec<T> {
fn write(&self, output: &mut Output) {
self.as_slice().write(output);
}
}
impl Writable for () {
fn write(&self, _output: &mut Output) {}
}
macro_rules! write_to_string {
($($t:ident)+) => {
$(impl Writable for $t { fn write(& self, output : & mut Output) { self
.to_string().write(output); } })+
};
}
write_to_string!(u16 u32 u64 u128 usize i8 i16 i32 i64 i128 isize);
macro_rules! tuple_writable {
($name0:ident $($name:ident : $id:tt)*) => {
impl <$name0 : Writable, $($name : Writable,)*> Writable for ($name0, $($name,)*)
{ fn write(& self, out : & mut Output) { self.0.write(out); $(out.put(out
.separator); self.$id .write(out);)* } }
};
}
tuple_writable! {
T
}
tuple_writable! {
T U : 1
}
tuple_writable! {
T U : 1 V : 2
}
tuple_writable! {
T U : 1 V : 2 X : 3
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6 B : 7
}
tuple_writable! {
T U : 1 V : 2 X : 3 Y : 4 Z : 5 A : 6 B : 7 C : 8
}
impl<T: Writable> Writable for Option<T> {
fn write(&self, output: &mut Output) {
match self {
None => (-1).write(output),
Some(t) => t.write(output),
}
}
}
impl Writable for bool {
fn write(&self, output: &mut Output) {
let bool_output = output.bool_output;
bool_output.output(output, *self)
}
}
impl<T: Writable> Writable for Reverse<T> {
fn write(&self, output: &mut Output) {
self.0.write(output);
}
}
static mut ERR: Option<Stderr> = None;
pub fn err() -> Output<'static> {
unsafe {
if ERR.is_none() {
ERR = Some(stderr());
}
Output::new_with_auto_flush(ERR.as_mut().unwrap())
}
}
}
}
pub mod misc {
pub mod test_type {
pub enum TestType {
Single,
MultiNumber,
MultiEof,
}
pub enum TaskType {
Classic,
Interactive,
}
}
}
pub mod numbers {
pub mod num_traits {
pub mod algebra {
use crate::algo_lib::numbers::num_traits::invertible::Invertible;
use std::ops::{
Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign,
};
pub trait Zero {
fn zero() -> Self;
}
pub trait One {
fn one() -> Self;
}
pub trait AdditionMonoid: Add<Output = Self> + AddAssign + Zero + Eq + Sized {}
impl<T: Add<Output = Self> + AddAssign + Zero + Eq> AdditionMonoid for T {}
pub trait AdditionMonoidWithSub: AdditionMonoid + Sub<Output = Self> + SubAssign {}
impl<T: AdditionMonoid + Sub<Output = Self> + SubAssign> AdditionMonoidWithSub for T {}
pub trait AdditionGroup: AdditionMonoidWithSub + Neg<Output = Self> {}
impl<T: AdditionMonoidWithSub + Neg<Output = Self>> AdditionGroup for T {}
pub trait MultiplicationMonoid: Mul<Output = Self> + MulAssign + One + Eq + Sized {}
impl<T: Mul<Output = Self> + MulAssign + One + Eq> MultiplicationMonoid for T {}
pub trait IntegerMultiplicationMonoid: MultiplicationMonoid + Div<
Output = Self,
> + Rem<Output = Self> + DivAssign + RemAssign {}
impl<
T: MultiplicationMonoid + Div<Output = Self> + Rem<Output = Self> + DivAssign
+ RemAssign,
> IntegerMultiplicationMonoid for T {}
pub trait MultiplicationGroup: MultiplicationMonoid + Div<
Output = Self,
> + DivAssign + Invertible<Output = Self> {}
impl<
T: MultiplicationMonoid + Div<Output = Self> + DivAssign + Invertible<Output = Self>,
> MultiplicationGroup for T {}
pub trait SemiRing: AdditionMonoid + MultiplicationMonoid {}
impl<T: AdditionMonoid + MultiplicationMonoid> SemiRing for T {}
pub trait SemiRingWithSub: AdditionMonoidWithSub + SemiRing {}
impl<T: AdditionMonoidWithSub + SemiRing> SemiRingWithSub for T {}
pub trait Ring: SemiRing + AdditionGroup {}
impl<T: SemiRing + AdditionGroup> Ring for T {}
pub trait IntegerSemiRing: SemiRing + IntegerMultiplicationMonoid {}
impl<T: SemiRing + IntegerMultiplicationMonoid> IntegerSemiRing for T {}
pub trait IntegerSemiRingWithSub: SemiRingWithSub + IntegerSemiRing {}
impl<T: SemiRingWithSub + IntegerSemiRing> IntegerSemiRingWithSub for T {}
pub trait IntegerRing: IntegerSemiRing + Ring {}
impl<T: IntegerSemiRing + Ring> IntegerRing for T {}
pub trait Field: Ring + MultiplicationGroup {}
impl<T: Ring + MultiplicationGroup> Field for T {}
macro_rules! zero_one_integer_impl {
($($t:ident)+) => {
$(impl Zero for $t { fn zero() -> Self { 0 } } impl One for $t { fn one() -> Self
{ 1 } })+
};
}
zero_one_integer_impl!(i128 i64 i32 i16 i8 isize u128 u64 u32 u16 u8 usize);
}
pub mod invertible {
pub trait Invertible {
type Output;
fn inv(&self) -> Option<Self::Output>;
}
}
}
}
}