#include <bits/stdc++.h>
using namespace std;
// Global variables for DFS recursion
int N, L, D;
vector<int> arr;
// DFS with memoization using bitmask.
unordered_map<int, bool> dp;
// Helper function to generate combinations of indices (for blocks with L > 2).
// This function will try to choose (r) indices from vector 'candidates' (starting from index pos)
// and then combine with base index 'base'. The current mask of chosen indices (besides base) is 'curMask'
// and the current maximum value in the block is 'curMax'.
bool chooseCombination(const vector<int>& candidates, int pos, int r, int base, int curMask, int curMax, int mask) {
// If we have chosen enough indices, then check if block's max is exactly arr[base] + D.
if(r == 0) {
if(curMax == arr[base] + D) {
int newMask = mask | (1 << base);
// Mark all chosen indices as used.
newMask |= curMask;
// Try to partition the remaining indices.
// We call the main DFS recursion.
// (The DFS function is defined below.)
extern bool dfs(int);
if(dfs(newMask)) return true;
}
return false;
}
// If not enough candidates remain, return false.
if(pos >= (int)candidates.size()) return false;
// Option 1: choose candidate at pos if it does not exceed arr[base]+D.
int idx = candidates[pos];
// Prune: if this candidate's value is greater than the allowed maximum, skip.
if(arr[idx] > arr[base] + D)
return false;
// Choose candidate at pos.
if(chooseCombination(candidates, pos + 1, r - 1, base, curMask | (1 << idx), max(curMax, arr[idx]), mask))
return true;
// Option 2: skip candidate at pos.
if(chooseCombination(candidates, pos + 1, r, base, curMask, curMax, mask))
return true;
return false;
}
// DFS function that tries to partition the sorted array into groups of size L with difference D.
// 'mask' is a bitmask indicating which indices have been used (1 means used).
bool dfs(int mask) {
if(mask == (1 << N) - 1) return true; // All indices used.
if(dp.count(mask)) return dp[mask];
// Find the smallest unused index; this will be the minimum element of the next block.
int base = 0;
while(mask & (1 << base)) base++;
// Build list of unused indices (only indices > base).
vector<int> candidates;
for (int i = base + 1; i < N; i++) {
if(!(mask & (1 << i)))
candidates.push_back(i);
}
bool possible = false;
if(L == 2) {
// For blocks of size 2, we just need to find one candidate j such that arr[j]-arr[base] == D.
for (int j : candidates) {
if(arr[j] - arr[base] == D) {
int newMask = mask | (1 << base) | (1 << j);
if(dfs(newMask)) {
possible = true;
break;
}
}
}
} else {
// For blocks of size L > 2, we need to choose L-1 indices from candidates.
// At least one of the chosen indices must be such that its value equals arr[base]+D (so that the max is achieved).
possible = chooseCombination(candidates, 0, L - 1, base, 0, arr[base], mask);
}
dp[mask] = possible;
return possible;
}
// The main function that returns the maximum number of blocks the array can be partitioned into.
int maxBlocks(vector<int>& inputArr) {
N = inputArr.size();
arr = inputArr;
sort(arr.begin(), arr.end());
// Precompute candidate differences D from any pair (and include 0)
set<int> diffs;
for (int i = 0; i < N; i++) {
for (int j = i+1; j < N; j++) {
diffs.insert(arr[j] - arr[i]);
}
}
diffs.insert(0); // In case of blocks with all equal elements.
int best = 1; // at worst, the entire array is one block.
// Try possible k from maximum possible (N/2) down to 2.
for (int k = N/2; k >= 2; k--) {
if(N % k != 0) continue; // must divide equally
L = N / k;
// For each candidate difference, try to partition.
for (int d : diffs) {
D = d;
dp.clear();
if(dfs(0)) {
return k;
}
}
}
return best;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while(T--){
int n;
cin >> n;
vector<int> arrInput(n);
for (int i = 0; i < n; i++){
cin >> arrInput[i];
}
cout << maxBlocks(arrInput) << "\n";
}
return 0;
}