#include <bits/stdc++.h>
using namespace std;
int N, L, D;
vector<int> arr;
unordered_map<int, bool> dp; // memo for global DFS (key = used indices mask)
// Global DFS: try to partition the sorted array (of size N) into groups of size L with common difference D.
// mask: bitmask of indices already used.
bool dfs(int mask);
// Helper: given a fixed "base" (the smallest unused index in the current DFS call)
// and a candidate list (indices > base and unused), recursively choose L-1 indices
// to form a block with min = arr[base] and max = arr[base] + D.
// pos: current index in candidate vector to consider
// r: how many indices still need to be chosen
// found: whether we have already chosen an element equal to arr[base] + D
// currentSet: bitmask (with respect to global indices) of the candidates chosen so far.
bool chooseCombination(const vector<int> &candidates, int pos, int r, bool found, int currentSet, int base, int curMask) {
// If we have chosen enough indices, check that the block has the required max and try DFS on the new mask.
if(r == 0) {
if(!found) return false; // must have at least one candidate equal to arr[base] + D
int newMask = curMask | (1 << base) | currentSet;
if(dfs(newMask))
return true;
return false;
}
// Prune: if there are not enough remaining candidates
if(pos >= (int)candidates.size())
return false;
// Also, if we haven't found an element equal to arr[base]+D, check if any candidate in the remaining list can supply that.
bool canFindMax = found;
for (int i = pos; i < (int)candidates.size(); i++) {
if(arr[candidates[i]] == arr[base] + D) { canFindMax = true; break; }
}
if(!canFindMax) return false;
// Option 1: pick the candidate at pos.
int idx = candidates[pos];
bool newFound = found || (arr[idx] == arr[base] + D);
if(chooseCombination(candidates, pos + 1, r - 1, newFound, currentSet | (1 << idx), base, curMask))
return true;
// Option 2: skip the candidate at pos.
if(chooseCombination(candidates, pos + 1, r, found, currentSet, base, curMask))
return true;
return false;
}
bool dfs(int mask) {
if(mask == (1 << N) - 1) return true; // all indices used
if(dp.count(mask))
return dp[mask];
// Choose the smallest unused index as the base for the next block.
int base = 0;
while(mask & (1 << base)) base++;
// Gather candidate indices (all unused indices > base).
vector<int> candidates;
for (int i = base + 1; i < N; i++) {
if(!(mask & (1 << i)))
candidates.push_back(i);
}
bool possible = false;
if(L == 2) {
// For blocks of size 2, simply try pairing base with some candidate j that gives the required diff.
for (int j : candidates) {
if(arr[j] - arr[base] == D) {
int newMask = mask | (1 << base) | (1 << j);
if(dfs(newMask)) {
possible = true;
break;
}
}
}
} else {
// For blocks of size > 2, choose L-1 candidates from "candidates" such that one of them equals arr[base]+D.
possible = chooseCombination(candidates, 0, L - 1, false, 0, base, mask);
}
dp[mask] = possible;
return possible;
}
// Function to compute the maximum number of blocks into which the array can be partitioned.
int maxBlocks(vector<int>& inputArr) {
N = inputArr.size();
arr = inputArr;
sort(arr.begin(), arr.end());
// Precompute candidate differences D (from any pair) plus 0.
set<int> diffs;
for (int i = 0; i < N; i++){
for (int j = i + 1; j < N; j++){
diffs.insert(arr[j] - arr[i]);
}
}
diffs.insert(0);
int best = 1; // worst-case: entire array is one block.
// Try candidate k (number of blocks) from highest possible (N/2) down to 2.
for (int k = N/2; k >= 2; k--) {
if(N % k != 0) continue; // blocks must be of equal length
L = N / k;
// For each candidate difference, attempt to partition.
for (int d : diffs) {
D = d;
dp.clear();
if(dfs(0)) {
return k;
}
}
}
return best;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while(T--){
int n;
cin >> n;
vector<int> arrInput(n);
for (int i = 0; i < n; i++){
cin >> arrInput[i];
}
cout << maxBlocks(arrInput) << "\n";
}
return 0;
}