#include <bits/stdc++.h>
using namespace std;
int N, L, D;
vector<int> arr;
int fullMask;
unordered_map<int, bool> dp; // memoization for DFS by used-indices mask
// DFS: given a bitmask 'mask' (with bits=1 for used indices),
// try to partition the remaining indices into blocks (each of size L and with max-min == D).
bool dfs(int mask) {
if(mask == fullMask) return true;
if(dp.count(mask)) return dp[mask];
// Find the smallest unused index: this will serve as the block's minimum.
int base = 0;
while(mask & (1 << base)) base++;
// Gather candidates (unused indices greater than base)
vector<int> cand;
for (int i = base + 1; i < N; i++) {
if(!(mask & (1 << i)))
cand.push_back(i);
}
// If we cannot choose enough indices to form a block, fail.
if(cand.size() < (size_t)(L - 1)) {
dp[mask] = false;
return false;
}
// For a valid block, one of the chosen indices must hold the value: arr[base] + D.
bool hasNeeded = false;
for (int idx : cand) {
if(arr[idx] == arr[base] + D) { hasNeeded = true; break; }
}
if(!hasNeeded) {
dp[mask] = false;
return false;
}
// If block size is 2, we just need one partner such that diff equals D.
if(L == 2) {
for (int idx : cand) {
if(arr[idx] - arr[base] == D) {
int newMask = mask | (1 << base) | (1 << idx);
if(dfs(newMask))
{
dp[mask] = true;
return true;
}
}
}
dp[mask] = false;
return false;
}
// For L > 2, we need to choose (L - 1) indices from cand.
vector<int> comb; // store chosen indices (they will be in increasing order, and so are in non-decreasing order by value)
// Recursive function to choose r indices from cand starting at position idx.
function<bool(int, int)> rec = [&](int idx, int r) -> bool {
if(r == 0) {
// Check if the maximum in the block is exactly arr[base] + D.
// Because cand (and comb) are in increasing order (and arr is sorted),
// the last chosen index gives the block maximum.
if(arr[comb.back()] == arr[base] + D) {
int newMask = mask | (1 << base);
for (int j : comb)
newMask |= (1 << j);
if(dfs(newMask))
return true;
}
return false;
}
// Not enough candidates left.
if((int)cand.size() - idx < r) return false;
// Pruning: if the maximum available candidate in the remainder is less than arr[base] + D, no need to continue.
if(arr[cand.back()] < arr[base] + D)
return false;
// Try picking some candidates.
for (int i = idx; i < (int)cand.size(); i++) {
comb.push_back(cand[i]);
if(rec(i+1, r-1))
return true;
comb.pop_back();
}
return false;
};
bool possible = rec(0, L - 1);
dp[mask] = possible;
return possible;
}
// For a given candidate block count k (with L = N/k) and candidate difference D,
// try to partition the sorted array. Returns true if possible.
bool canPartition(int L_val, int diff) {
L = L_val;
D = diff;
dp.clear();
return dfs(0);
}
// Main function: try candidate k (number of blocks) from maximum down to 2.
// If none works, return 1 (the whole array as one block).
int maxBlocks(vector<int>& inputArr) {
N = inputArr.size();
arr = inputArr;
sort(arr.begin(), arr.end());
fullMask = (1 << N) - 1;
// Precompute candidate differences from any pair (and add 0).
set<int> diffs;
for (int i = 0; i < N; i++){
for (int j = i+1; j < N; j++){
diffs.insert(arr[j] - arr[i]);
}
}
diffs.insert(0);
int best = 1; // at worst, the whole array is one block.
// Try candidate k (number of blocks) from highest possible (i.e. when block size L is smallest) down to 2.
for (int k = N/2; k >= 2; k--) {
if(N % k != 0) continue; // blocks must be of equal size
int L_val = N / k;
// Try each candidate difference.
for (int d : diffs) {
if(canPartition(L_val, d))
return k;
}
}
return best;
}
int main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
int T;
cin >> T;
while(T--){
int n;
cin >> n;
vector<int> arrInput(n);
for (int i = 0; i < n; i++){
cin >> arrInput[i];
}
cout << maxBlocks(arrInput) << "\n";
}
return 0;
}