/**
* author: Binoy Barman
* created: 2025-04-06 22:09:32
**/
#include<bits/stdc++.h>
#ifdef LOCAL
#include "algo/debug.h"
#else
#define dbg(...) 42
#endif
using namespace std;
using ll = long long;
const int mod = 1e9 + 7;
const int inf = 2e9;
#define int long long
#define nl '\n'
#define all(v) v.begin(), v.end()
#define clg(x) (32 - __builtin_clz(x))
#define Testcase_Handler int tts, tc = 0; cin >> tts; hell: while(tc++ < tts)
#define uniq(v) sort(all(v)), v.resize(distance(v.begin(), unique(v.begin(), v.end())))
template<class T> using minheap = priority_queue<T, vector<T>, greater<T>>;
template<typename T> istream& operator>>(istream& in, vector<T>& a) {for(auto &x : a) in >> x; return in;};
template<typename A, typename B> istream& operator>>(istream& in, pair<A, B>& p) {in >> p.first >> p.second; return in;};
template<typename T> ostream& operator<<(ostream& out, vector<T>& a) {bool first = true;for(auto &x : a) {if(!first) out << ' ';first = false;out << x;}return out;};
namespace Dark_Lord_Binoy {
inline void init() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
#ifdef LOCAL
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
}
}
namespace PollardRho {
mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
const int P = 1e6 + 9;
ll seq[P];
int primes[P], spf[P];
inline ll add_mod(ll x, ll y, ll m) {
return (x += y) < m ? x : x - m;
}
inline ll mul_mod(ll x, ll y, ll m) {
// ll res = __int128(x) * y % m;
// return res;
ll res = x * y - (ll)((long double)x * y / m + 0.5) * m;
return res < 0 ? res + m : res;
}
inline ll pow_mod(ll x, ll n, ll m) {
ll res = 1 % m;
for (; n; n >>= 1) {
if (n & 1) res = mul_mod(res, x, m);
x = mul_mod(x, x, m);
}
return res;
}
// O(it * (logn)^3), it = number of rounds performed
inline bool miller_rabin(ll n) {
if (n <= 2 || (n & 1 ^ 1)) return (n == 2);
if (n < P) return spf[n] == n;
ll c, d, s = 0, r = n - 1;
for (; !(r & 1); r >>= 1, s++) {}
// each iteration is a round
for (int i = 0; primes[i] < n && primes[i] < 32; i++) {
c = pow_mod(primes[i], r, n);
for (int j = 0; j < s; j++) {
d = mul_mod(c, c, n);
if (d == 1 && c != 1 && c != (n - 1)) return false;
c = d;
}
if (c != 1) return false;
}
return true;
}
void init() {
int cnt = 0;
for (int i = 2; i < P; i++) {
if (!spf[i]) primes[cnt++] = spf[i] = i;
for (int j = 0, k; (k = i * primes[j]) < P; j++) {
spf[k] = primes[j];
if (spf[i] == spf[k]) break;
}
}
}
// returns O(n^(1/4))
ll pollard_rho(ll n) {
while (1) {
ll x = rnd() % n, y = x, c = rnd() % n, u = 1, v, t = 0;
ll *px = seq, *py = seq;
while (1) {
*py++ = y = add_mod(mul_mod(y, y, n), c, n);
*py++ = y = add_mod(mul_mod(y, y, n), c, n);
if ((x = *px++) == y) break;
v = u;
u = mul_mod(u, abs(y - x), n);
if (!u) return __gcd(v, n);
if (++t == 32) {
t = 0;
if ((u = __gcd(u, n)) > 1 && u < n) return u;
}
}
if (t && (u = __gcd(u, n)) > 1 && u < n) return u;
}
}
vector<ll> factorize(ll n) {
if (n == 1) return vector <ll>();
if (miller_rabin(n)) return vector<ll> {n};
vector<ll> v, w;
while (n > 1 && n < P) {
v.push_back(spf[n]);
n /= spf[n];
}
if (n >= P) {
ll x = pollard_rho(n);
v = factorize(x);
w = factorize(n / x);
v.insert(v.end(), w.begin(), w.end());
}
return v;
}
}
const int N = 1e5 + 1, MAXN = 1e6 + 1;
int ans[MAXN];
int divisors(long long n) {
auto pf = PollardRho::factorize(n);
map<int, int> f;
for(auto x : pf) {
f[x]++;
}
int divs = 1;
for(auto it : f) {
divs *= (1 + it.second);
}
return divs;
}
void prec() {
PollardRho::init();
memset(ans, -1, sizeof ans);
int sum = 0;
ans[0] = 0;
for (int i = 1; i < N; i++) {
sum += i;
int cur = divisors(sum);
ans[i] = max(ans[i - 1], cur);
}
}
int32_t main() {
Dark_Lord_Binoy::init();
prec();
Testcase_Handler {
int n;
cin >> n;
if(n <= N) {
cout << ans[n] << nl;
goto hell;
}
int cur = 0;
for (int i = n; i >= n - 5; i--) {
if(ans[n] != -1) break;
int sum = (n * (n + 1)) / 2LL;
auto pf = PollardRho::factorize(n);
map<int, int> f;
for(auto x : pf) {
f[x]++;
}
int divs = 1;
for(auto it : f) {
divs *= (1 + it.second);
}
ans[n] = max(ans[n], divs);
}
cout << ans[n] << nl;
}
dbg(_Time_);
return 0;
}