#include<bits/stdc++.h>
#define ll long long
using namespace std;
int const N = 1e6 + 2;
vector<ll> a(N);
class SegmentTree {
public:
ll n;
vector<ll> tree;
SegmentTree(ll n) : tree(2 * n + 10), n(n){};
void build() {
for (int i = 1; i <= n; i++)
tree[n + i] = a[i];
for (int i = n; i > 0; i--)
tree[i] = max(tree[i << 1], tree[i << 1 | 1]);
}
ll query(int l, int r) {
ll res = 0;
for (l += n, r += n + 1; l < r; l >>= 1, r >>= 1) {
if (l & 1) res = max(res, tree[l++]);
if (r & 1) res = max(res, tree[--r]);
}
return res;
}
};
namespace PollardRho {
mt19937 rnd(chrono::steady_clock::now().time_since_epoch().count());
const int P = 1e6 + 9;
ll seq[P];
int primes[P], spf[P];
inline ll add_mod(ll x, ll y, ll m) {
return (x += y) < m ? x : x - m;
}
inline ll mul_mod(ll x, ll y, ll m) {
ll res = __int128(x) * y % m;
return res;
// ll res = x * y - (ll)((long double)x * y / m + 0.5) * m;
// return res < 0 ? res + m : res;
}
inline ll pow_mod(ll x, ll n, ll m) {
ll res = 1 % m;
for (; n; n >>= 1) {
if (n & 1) res = mul_mod(res, x, m);
x = mul_mod(x, x, m);
}
return res;
}
// O(it * (logn)^3), it = number of rounds performed
inline bool miller_rabin(ll n) {
if (n <= 2 || (n & 1 ^ 1)) return (n == 2);
if (n < P) return spf[n] == n;
ll c, d, s = 0, r = n - 1;
for (; !(r & 1); r >>= 1, s++) {}
// each iteration is a round
for (int i = 0; primes[i] < n && primes[i] < 32; i++) {
c = pow_mod(primes[i], r, n);
for (int j = 0; j < s; j++) {
d = mul_mod(c, c, n);
if (d == 1 && c != 1 && c != (n - 1)) return false;
c = d;
}
if (c != 1) return false;
}
return true;
}
void init() {
int cnt = 0;
for (int i = 2; i < P; i++) {
if (!spf[i]) primes[cnt++] = spf[i] = i;
for (int j = 0, k; (k = i * primes[j]) < P; j++) {
spf[k] = primes[j];
if (spf[i] == spf[k]) break;
}
}
}
// returns O(n^(1/4))
ll pollard_rho(ll n) {
while (1) {
ll x = rnd() % n, y = x, c = rnd() % n, u = 1, v, t = 0;
ll *px = seq, *py = seq;
while (1) {
*py++ = y = add_mod(mul_mod(y, y, n), c, n);
*py++ = y = add_mod(mul_mod(y, y, n), c, n);
if ((x = *px++) == y) break;
v = u;
u = mul_mod(u, abs(y - x), n);
if (!u) return __gcd(v, n);
if (++t == 32) {
t = 0;
if ((u = __gcd(u, n)) > 1 && u < n) return u;
}
}
if (t && (u = __gcd(u, n)) > 1 && u < n) return u;
}
}
vector<ll> factorize(ll n) {
if (n == 1) return vector <ll>();
if (miller_rabin(n)) return vector<ll> {n};
vector <ll> v, w;
while (n > 1 && n < P) {
v.push_back(spf[n]);
n /= spf[n];
}
if (n >= P) {
ll x = pollard_rho(n);
v = factorize(x);
w = factorize(n / x);
v.insert(v.end(), w.begin(), w.end());
}
return v;
}
}
int main() {
vector<ll> d(N);
for (int i = 1; i < N; i++) {
for (int j = i; j < N; j += i) {
d[j]++;
}
}
ll S = 0;
for (int i = 1; i < N - 1; i++) {
S += i;
if (S < N - 1) a[i] = d[S];
else {
ll c = 1;
auto f = PollardRho::factorize(S);
for (auto it : f){
c *= (it + 1);
}
a[i] = c;
}
}
SegmentTree mx(N - 1);
mx.build();
int t;
cin >> t;
while (t--){
ll n;
cin >> n;
cout << mx.query(1, n) << endl;
}
}