/ SeriousOJ /

Record Detail

Time Exceeded


  
# Status Time Cost Memory Cost
#1 Accepted 4ms 2.082 MiB
#2 Accepted 3ms 2.062 MiB
#3 Accepted 3ms 2.02 MiB
#4 Accepted 3ms 2.02 MiB
#5 Accepted 4ms 2.02 MiB
#6 Accepted 11ms 2.02 MiB
#7 Accepted 11ms 2.02 MiB
#8 Accepted 11ms 2.066 MiB
#9 Accepted 6ms 2.02 MiB
#10 Accepted 6ms 2.078 MiB
#11 Accepted 6ms 2.082 MiB
#12 Accepted 4ms 2.02 MiB
#13 Accepted 11ms 2.02 MiB
#14 Accepted 5ms 2.02 MiB
#15 Accepted 4ms 2.023 MiB
#16 Accepted 3ms 2.02 MiB
#17 Accepted 3ms 1.836 MiB
#18 Accepted 3ms 1.844 MiB
#19 Accepted 3ms 2.066 MiB
#20 Accepted 3ms 2.02 MiB
#21 Accepted 3ms 1.863 MiB
#22 Accepted 3ms 2.02 MiB
#23 Accepted 5ms 2.02 MiB
#24 Accepted 5ms 1.836 MiB
#25 Accepted 5ms 2.02 MiB
#26 Accepted 6ms 2.066 MiB
#27 Accepted 8ms 2.066 MiB
#28 Accepted 8ms 1.977 MiB
#29 Accepted 8ms 2.02 MiB
#30 Accepted 8ms 2.02 MiB
#31 Accepted 8ms 2.02 MiB
#32 Accepted 8ms 2.02 MiB
#33 Accepted 8ms 2.02 MiB
#34 Accepted 9ms 2.02 MiB
#35 Accepted 10ms 1.836 MiB
#36 Accepted 11ms 2.191 MiB
#37 Accepted 11ms 2.02 MiB
#38 Accepted 11ms 2.023 MiB
#39 Accepted 11ms 2.02 MiB
#40 Accepted 11ms 2.02 MiB
#41 Accepted 11ms 2.02 MiB
#42 Accepted 11ms 2.02 MiB
#43 Accepted 11ms 2.02 MiB
#44 Accepted 11ms 2.0 MiB
#45 Accepted 11ms 2.012 MiB
#46 Accepted 11ms 2.02 MiB
#47 Accepted 11ms 2.02 MiB
#48 Accepted 11ms 2.02 MiB
#49 Accepted 11ms 2.066 MiB
#50 Accepted 11ms 2.023 MiB
#51 Accepted 11ms 2.078 MiB
#52 Accepted 11ms 2.02 MiB
#53 Accepted 11ms 2.02 MiB
#54 Accepted 11ms 2.02 MiB
#55 Accepted 11ms 2.02 MiB
#56 Accepted 11ms 2.02 MiB
#57 Accepted 11ms 2.02 MiB
#58 Accepted 11ms 1.887 MiB
#59 Accepted 11ms 2.02 MiB
#60 Accepted 11ms 2.02 MiB
#61 Accepted 11ms 2.02 MiB
#62 Accepted 12ms 2.02 MiB
#63 Accepted 11ms 2.02 MiB
#64 Accepted 11ms 2.02 MiB
#65 Accepted 11ms 2.066 MiB
#66 Accepted 11ms 2.02 MiB
#67 Accepted 11ms 2.02 MiB
#68 Accepted 11ms 1.844 MiB
#69 Accepted 11ms 2.02 MiB
#70 Accepted 11ms 2.031 MiB
#71 Accepted 11ms 1.934 MiB
#72 Accepted 11ms 2.02 MiB
#73 Accepted 11ms 1.922 MiB
#74 Accepted 11ms 2.02 MiB
#75 Accepted 11ms 2.066 MiB
#76 Accepted 11ms 2.02 MiB
#77 Accepted 11ms 2.02 MiB
#78 Accepted 11ms 2.02 MiB
#79 Accepted 11ms 2.07 MiB
#80 Accepted 11ms 1.988 MiB
#81 Accepted 11ms 2.051 MiB
#82 Accepted 11ms 2.02 MiB
#83 Accepted 11ms 2.066 MiB
#84 Accepted 11ms 2.02 MiB
#85 Accepted 11ms 2.02 MiB
#86 Accepted 11ms 2.02 MiB
#87 Accepted 11ms 2.02 MiB
#88 Accepted 11ms 2.02 MiB
#89 Accepted 8ms 2.07 MiB
#90 Accepted 8ms 2.02 MiB
#91 Accepted 8ms 1.836 MiB
#92 Time Exceeded ≥5098ms ≥4.906 MiB
#93 Time Exceeded ≥5095ms ≥5.023 MiB

Code

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1000000007;

// Precompute powers of 2 up to maxN
vector<long long> pow2;

void precompute_pow2(int maxN) {
    pow2.resize(maxN + 1);
    pow2[0] = 1;
    for (int i = 1; i <= maxN; i++) {
        pow2[i] = (pow2[i - 1] * 2) % MOD;
    }
}

int main() {
    ios::sync_with_stdio(false);
    cin.tie(nullptr);

    int T;
    cin >> T;

    int maxN = 200000;
    precompute_pow2(maxN);

    while (T--) {
        int N;
        cin >> N;
        vector<int> A(N);
        for (int i = 0; i < N; i++) cin >> A[i];

        // prefix counts of elements less than current value
        // We'll need to compute counts quickly, so we use two passes

        long long answer = 0;

        // Step 1: For each element, find how many smaller elements are on the left
        vector<int> leftCount(N), rightCount(N);

        // Left side
        vector<int> freq(N + 1, 0);
        for (int i = 0; i < N; i++) {
            int val = A[i];
            long long smaller = 0;
            // count of numbers < val seen so far
            for (int x = 1; x < val; x++) smaller += freq[x];
            leftCount[i] = smaller;
            freq[val]++;
        }

        // Right side
        fill(freq.begin(), freq.end(), 0);
        for (int i = N - 1; i >= 0; i--) {
            int val = A[i];
            long long smaller = 0;
            for (int x = 1; x < val; x++) smaller += freq[x];
            rightCount[i] = smaller;
            freq[val]++;
        }

        // Step 2: Calculate contribution for each element as max
        for (int i = 1; i < N - 1; i++) {
            long long L = leftCount[i];
            long long R = rightCount[i];

            if (L > 0 && R > 0) {
                long long waysLeft = (pow2[L] - 1 + MOD) % MOD;
                long long waysRight = (pow2[R] - 1 + MOD) % MOD;
                long long contrib = (waysLeft * waysRight) % MOD;
                answer = (answer + contrib) % MOD;
            }
        }

        cout << answer % MOD << "\n";
    }

    return 0;
}

Information

Submit By
Type
Submission
Problem
P1213 good sequence
Language
C++17 (G++ 13.2.0)
Submit At
2025-07-26 23:20:51
Judged At
2025-07-26 23:20:51
Judged By
Score
91
Total Time
≥5098ms
Peak Memory
≥5.023 MiB