#ifdef ONPC
#include <sys/resource.h>
#pragma GCC diagnostic ignored "-Wunused-variable"
#pragma GCC diagnostic ignored "-Wrange-loop-construct"
#pragma GCC diagnostic ignored "-Wsign-compare"
#endif
#pragma GCC diagnostic ignored "-Wrange-loop-construct"
#include "bits/stdc++.h"
#include "ext/pb_ds/assoc_container.hpp"
using namespace std;
using namespace __gnu_pbds;
bool startmemory;
#define endln "\n"
#define EPSILON 1e-12
// #define ll long long
#define int long long
#define uint __uint128_t
#define front_zero(n) __builtin_clzll(n)
#define back_zero(n) __builtin_ctzll(n)
#define total_one(n) __builtin_popcountll(n)
#ifdef ONPC
#include "Debug/debug.h"
#else
#define print(...) 42
#define printarr(...) 42
#endif
#define MULTI \
int _T; \
cin >> _T; \
while (_T--)
int test_cases = 1;
const int INF = 1e18; // infinity
const int mod = 1e9 + 7; // mod
const int base1 = 972663749; // base1
const int base2 = 998244353; // base2
const int mod1 = 1e9 + 7; // mod1
const int mod2 = 1e9 + 9; // mod2
const long double pi = 4 * atan(1);
vector<int> dx = {-1, +1, +0, +0, +1, -1, +1, -1};
vector<int> dy = {+0, +0, +1, -1, +1, -1, -1, +1};
vector<int> daysInMounth = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
mt19937 rng(chrono::steady_clock::now().time_since_epoch().count());
/////////////////////////////////////////////////////////////////////////////////////
template <class T>
bool ckmin(T &a, const T &b) { return b < a ? a = b, 1 : 0; }
template <class T>
bool ckmax(T &a, const T &b) { return a < b ? a = b, 1 : 0; }
template <class T>
using maxheap = priority_queue<T, vector<T>>;
template <class T>
using minheap = priority_queue<T, vector<T>, greater<T>>;
template <class T>
using ordered_set = tree<T, null_type,
less<T>, rb_tree_tag,
tree_order_statistics_node_update>;
template <const int32_t MOD>
struct modint
{
int32_t value;
modint() = default;
modint(int32_t value_) : value(value_) {}
inline modint<MOD> operator+(modint<MOD> other) const
{
int32_t c = this->value + other.value;
return modint<MOD>(c >= MOD ? c - MOD : c);
}
inline modint<MOD> operator-(modint<MOD> other) const
{
int32_t c = this->value - other.value;
return modint<MOD>(c < 0 ? c + MOD : c);
}
inline modint<MOD> operator*(modint<MOD> other) const
{
int32_t c = (int64_t)this->value * other.value % MOD;
return modint<MOD>(c < 0 ? c + MOD : c);
}
inline modint<MOD> &operator+=(modint<MOD> other)
{
this->value += other.value;
if (this->value >= MOD)
this->value -= MOD;
return *this;
}
inline modint<MOD> &operator-=(modint<MOD> other)
{
this->value -= other.value;
if (this->value < 0)
this->value += MOD;
return *this;
}
inline modint<MOD> &operator*=(modint<MOD> other)
{
this->value = (int64_t)this->value * other.value % MOD;
if (this->value < 0)
this->value += MOD;
return *this;
}
inline modint<MOD> operator-() const { return modint<MOD>(this->value ? MOD - this->value : 0); }
modint<MOD> pow(uint64_t k) const
{
modint<MOD> x = *this, y = 1;
for (; k; k >>= 1)
{
if (k & 1)
y *= x;
x *= x;
}
return y;
}
modint<MOD> inv() const { return pow(MOD - 2); } // MOD must be a prime
inline modint<MOD> operator/(modint<MOD> other) const { return *this * other.inv(); }
inline modint<MOD> operator/=(modint<MOD> other) { return *this *= other.inv(); }
inline bool operator==(modint<MOD> other) const { return value == other.value; }
inline bool operator!=(modint<MOD> other) const { return value != other.value; }
inline bool operator<(modint<MOD> other) const { return value < other.value; }
inline bool operator>(modint<MOD> other) const { return value > other.value; }
};
template <int32_t MOD>
modint<MOD> operator*(int64_t value, modint<MOD> n) { return modint<MOD>(value) * n; }
template <int32_t MOD>
modint<MOD> operator*(int32_t value, modint<MOD> n) { return modint<MOD>(value % MOD) * n; }
template <int32_t MOD>
istream &operator>>(istream &in, modint<MOD> &n) { return in >> n.value; }
template <int32_t MOD>
ostream &operator<<(ostream &out, modint<MOD> n) { return out << n.value; }
struct Factorizer
{
vector<int> min_prime;
vector<int> primes;
int prec_n;
int sp_bound;
Factorizer(int prec_n = 100,
int sp_bound = 100,
int64_t rng_seed = -1) : prec_n(max(prec_n, 3ll)),
sp_bound(sp_bound),
rng(rng_seed != -1 ? rng_seed : chrono::steady_clock::now().time_since_epoch().count())
{
min_prime.assign(prec_n + 1, -1);
for (int i = 2; i <= prec_n; ++i)
{
if (min_prime[i] == -1)
{
min_prime[i] = i;
primes.push_back(i);
}
int k = min_prime[i];
for (int j : primes)
{
if (j * i > prec_n)
break;
min_prime[i * j] = j;
if (j == k)
break;
}
}
}
bool is_prime(int64_t n, bool check_small = true)
{
if (n <= prec_n)
return min_prime[n] == n;
if (check_small)
{
for (int p : primes)
{
if (p > sp_bound || (int64_t)p * p > n)
break;
if (n % p == 0)
return false;
}
}
int s = 0;
int64_t d = n - 1;
while (d % 2 == 0)
{
++s;
d >>= 1;
}
for (int64_t a : {2, 325, 9375, 28178, 450775, 9780504, 1795265022})
{
if (a >= n)
break;
int64_t x = mpow_long(a, d, n);
if (x == 1 || x == n - 1)
continue;
bool composite = true;
for (int i = 0; i < s - 1; ++i)
{
x = mul_mod(x, x, n);
if (x == 1)
return false;
if (x == n - 1)
{
composite = false;
break;
}
}
if (composite)
return false;
}
return true;
}
vector<pair<int64_t, int>> factorize(int64_t n, bool check_small = true)
{
vector<pair<int64_t, int>> res;
if (check_small)
{
for (int p : primes)
{
if (p > sp_bound)
break;
if ((int64_t)p * p > n)
break;
if (n % p == 0)
{
res.emplace_back(p, 0);
while (n % p == 0)
{
n /= p;
res.back().second++;
}
}
}
}
if (n == 1)
return res;
if (is_prime(n, false))
{
res.emplace_back(n, 1);
return res;
}
if (n <= prec_n)
{
while (n != 1)
{
int d = min_prime[n];
if (res.empty() || res.back().first != d)
res.emplace_back(d, 0);
res.back().second++;
n /= d;
}
return res;
}
int64_t d = get_divisor(n);
auto a = factorize(d, false);
for (auto &[div, cnt] : a)
{
cnt = 0;
while (n % div == 0)
{
n /= div;
++cnt;
}
}
auto b = factorize(n, false);
int ia = 0, ib = 0;
while (ia < a.size() || ib < b.size())
{
bool choosea;
if (ia == a.size())
choosea = false;
else if (ib == b.size())
choosea = true;
else if (a[ia].first <= b[ib].first)
choosea = true;
else
choosea = false;
res.push_back(choosea ? a[ia++] : b[ib++]);
}
return res;
}
private:
mt19937_64 rng;
int64_t rnd(int64_t l, int64_t r)
{
return uniform_int_distribution<int64_t>(l, r)(rng);
}
int64_t mpow_long(int64_t a, int64_t p, int64_t mod)
{
int64_t res = 1;
while (p)
{
if (p & 1)
res = mul_mod(res, a, mod);
p >>= 1;
a = mul_mod(a, a, mod);
}
return res;
}
int64_t mul_mod(int64_t a, int64_t b, int64_t mod)
{
int64_t res = a * b - mod * (int64_t)((long double)1 / mod * a * b);
if (res < 0)
res += mod;
if (res >= mod)
res -= mod;
return res;
}
int64_t get_divisor(int64_t n)
{
auto f = [&](int64_t x) -> int64_t
{
int64_t res = mul_mod(x, x, n) + 1;
if (res == n)
res = 0;
return res;
};
while (true)
{
int64_t x = rnd(1, n - 1);
int64_t y = f(x);
while (x != y)
{
int64_t d = gcd(n, abs(x - y));
if (d == 0)
break;
else if (d != 1)
return d;
x = f(x);
y = f(f(y));
}
}
}
};
void setIO(string s)
{
freopen((s + ".in").c_str(), "r", stdin);
freopen((s + ".out").c_str(), "w", stdout);
}
int modpower(int x, int n, int m)
{
if (n == 0)
return 1 % m;
int u = modpower(x, n / 2, m);
u = (u * u) % m;
if (n % 2 == 1)
u = (u * x) % m;
return u;
}
int power(int x, int n)
{
if (n == 0)
return 1;
int u = power(x, n / 2);
u = (u * u);
if (n % 2 == 1)
u = (u * x);
return u;
}
int modinverse(int i, int MOD)
{
if (i == 1)
return 1;
return (MOD - ((MOD / i) * modinverse(MOD % i, MOD)) % MOD + MOD) % MOD;
}
int lcm(int x1, int x2)
{
return ((x1 * x2) / __gcd(x1, x2));
}
bool isPowerOf2(int x)
{
return x > 0 && (x & (x - 1)) == 0;
}
void printVector(vector<int> &array, int startIndex = 0)
{
int sz = array.size();
if (sz == 0)
return;
sz += startIndex;
for (int i = startIndex; i < sz - 1; i++)
{
cout << array[i] << " ";
}
cout << array[sz - 1] << endl;
}
void printArray(int array[], int sz, int startIndex = 0)
{
sz += startIndex;
for (int i = startIndex; i < sz - 1; i++)
{
cout << array[i] << " ";
}
cout << array[sz - 1] << "\n";
}
template <typename T, typename T_iterable>
vector<pair<T, int>> run_length_encoding(const T_iterable &items)
{
vector<pair<T, int>> runs;
T previous;
int count = 0;
for (const T &item : items)
if (item == previous)
{
count++;
}
else
{
if (count > 0)
runs.emplace_back(previous, count);
previous = item;
count = 1;
}
if (count > 0)
runs.emplace_back(previous, count);
return runs;
}
struct BIT
{
int size;
vector<int> bit;
BIT(int n) : size(n + 4), bit(n + 10) {}
void update(int x, int v)
{
for (; x <= size; x += x & (-x))
bit[x] += v;
}
int query(int b)
{
int res = 0;
for (; b > 0; b -= b & (-b))
res += bit[b];
return res;
}
int query(int l, int r)
{
return query(r) - query(l - 1);
}
};
int rand(int low, int high)
{
random_device rd;
mt19937 gen(rd());
uniform_int_distribution<int> distribution(low, high);
return distribution(gen);
}
int sumton(int x)
{
double n = (-1 + sqrt(1 + 8 * x)) / 2;
int nn = n;
if ((n - nn) > 1e-6)
return -1;
else
return nn;
}
int rangesum(int l, int r)
{
return (r - l + 1) * (r + l) / 2;
}
//////////////////////////////////////----main-function----///////////////////////////////////////////
//====================================================================================================
//====================================================================================================
const int N = 1e5 + 5;
const int K = 2e6 + 5;
// FUV
int H, W, X, Y;
string s, s1, s2;
char ch, ch1, ch2;
int n, m, b, a, c, d, e, f, l, r, t, x, y, z, p, q, k, u, v, i, j, w, h;
// My Defination
// https://cses.fi/problemset/task/2413
// https://cses.fi/problemset/task/1744
// https://cses.fi/problemset/task/1653
// https://cses.fi/problemset/task/2181
int magic = 2100;
using z1 = modint<mod>;
int freq[N], A[N], euler[2 * N], in_time[N], out_time[N], timer_counter;
vector<int> adj[N];
struct Query
{
int L, R, idx;
};
bool compare(const Query &a, const Query &b)
{
if (a.L / magic != b.L / magic)
return a.L / magic < b.L / magic;
return a.R < b.R;
}
void dfs(int node, int parent)
{
in_time[node] = timer_counter;
euler[timer_counter++] = A[node];
for (int child : adj[node])
{
if (child != parent)
dfs(child, node);
}
out_time[node] = timer_counter - 1;
}
void pre_process()
{
}
void solve_the_problem(int test_case)
{
/*
Please check the value of N :(
Please read the problem again before coding !
*/
cin >> n;
for (int i = 0; i <= n; i++)
{
adj[i].clear();
freq[i] = 0;
euler[i] = 0;
in_time[i] = 0;
out_time[i] = 0;
}
for (int i = 1; i <= n; i++)
cin >> A[i];
for (int i = 1; i < n; i++)
{
cin >> u >> v;
adj[u].push_back(v);
adj[v].push_back(u);
}
timer_counter = 0;
dfs(1, -1);
magic = power(n, 2.0 / 3.0);
cin >> q;
vector<int> ans(q);
vector<Query> queries(q);
for (int i = 0; i < q; i++)
{
cin >> x;
queries[i].L = in_time[x];
queries[i].R = out_time[x];
queries[i].idx = i;
}
sort(queries.begin(), queries.end(), compare);
for (int i = 0; i <= n; i++)
freq[i] = 0;
int changes = 0;
int l = 0, r = -1;
for (auto &q : queries)
{
while (r < q.R)
{
r++;
if (euler[r] <= n)
freq[euler[r]]++;
}
while (r > q.R)
{
if (euler[r] <= n)
freq[euler[r]]--;
r--;
}
while (l < q.L)
{
if (euler[l] <= n)
freq[euler[l]]--;
l++;
}
while (l > q.L)
{
l--;
if (euler[l] <= n)
freq[euler[l]]++;
}
int S = q.R - q.L + 1;
int need = 0, surplus = 0, deficit = 0;
for (int num = 1; num <= S; num++)
{
if (freq[num] > 1)
surplus += freq[num] - 1;
else if (freq[num] == 0)
deficit += 1;
}
need = max(surplus, deficit);
ans[q.idx] = need;
}
for (int i = 0; i < q; i++)
cout << ans[i] << endl;
}
bool endmemory;
signed main()
{
#ifdef ONPC
const rlim_t stackSize = 1024 * 1024 * 1024; // 1 GB
struct rlimit rl;
rl.rlim_cur = stackSize;
rl.rlim_max = stackSize;
#endif
ios_base::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cout << fixed << setprecision(12);
#ifdef ONPC
char name[] = "input.txt";
freopen(name, "r", stdin);
freopen("output.txt", "w", stdout);
#endif
pre_process();
cin >> test_cases;
for (int test_case = 1; test_case <= test_cases; test_case++)
{
// cout << "Case " << test_case << ":\n";
// cout << "Case #" << test_case << ": ";
solve_the_problem(test_case);
#ifdef ONPC
// cout << "================================================================" << endln;
#endif
}
#ifdef ONPC
if (setrlimit(RLIMIT_STACK, &rl) != 0)
std::cerr << "Error setting stack size: " << strerror(errno) << std::endl;
cout << "Stack size: " << stackSize / 1024 / 1024 / 1024 << "GB \n";
cout << "Execution Time : " << 1.0 * clock() / CLOCKS_PER_SEC << "s\n";
cout << "Execution Memory : " << (&endmemory - &startmemory) / (1024 * 1024) << "MB\n";
#endif
return 0;
}