Problem Solution

1 solutions

  • 0
    @ 2025-04-08 09:49:58

    Author : Kamonasish Roy

    Editorial :
    Key Observations:
    Formula for S(L): S(L) can be expressed as: S(L) = L * (L + 1) / 2   
    Since L and L + 1 are consecutive integers, they are coprime, and one of them is even, ensuring the division by 2 is exact.

    Divisor Counting Insight: Depending on whether L is even or odd, you can break S(L) into two coprime parts:   
    • If L is even: S(L) = (L/2) * (L + 1)   
    • If L is odd: S(L) = L * ((L + 1)/2)   
    Since the factors are coprime, the number of divisors of S(L) is the product of the number of divisors of the two factors.

    Efficient Query Handling: With up to 10^5 test cases and N as large as 10^6, iterating for each test case separately would be inefficient. Instead, precompute the maximum number of divisors of S(L) for all L in [1, 10^6] and store the best result for each N. This allows each test case to be answered in O(1) time.

    Algorithm Outline:
    Precomputation:   
    a. For each L from 1 to 10^6, compute S(L) = L(L+1)/2.

    b.
    If L is even, let: x = L/2 and y = L+1.     
    If L is odd, let: x = L and y = (L+1)/2.

    c. Compute the number of divisors for x and y using prime factorization (or by using a sieve-based method).

    d. Since x and y are coprime, the number of divisors of S(L) is:     divisors(S(L)) = divisors(x) * divisors(y).

    Building the Best-So-Far Array: Maintain an array best[] where best[i] stores the maximum divisor count among all S(L) for L in [1, i]. This allows answering each test case in constant time.

    Answering Queries:   For each test case, given N, simply output best[N] – the maximum number of divisors for S(L) with L in [1, N].

    Complexity Analysis:
    • Precomputation Time:
    The heavy work is done once for L from 1 to 10^6. Using a sieve or similar method for fast factorization ensures that this step is efficient.

    • Query Time:
    Each test case is answered in O(1) by a direct lookup into the precomputed best[] array.

    • Overall Efficiency:
    The solution efficiently handles up to 10^5 test cases with N up to 10^6.

    Code(C++) :

    // Author : Kamonasish Roy (Bullet)
    // Time : 2025-03-02 14:02:10
    
    #include<bits/stdc++.h>
    using namespace std;
    const long long M=1e6+10,MOD=1e9+7;
    typedef long long ll;
    int p[M];
    int prefix[M];
    int fre[M];
    int limit=1e6;
    int divisor(int x,int y){
    	vector<int>prime_div;
    	while(x>1){
    		int cur=p[x];
    		while(x>1 && x%cur==0){
    			fre[cur]++;
    			if(fre[cur]==1)prime_div.push_back(cur);
    			x/=cur;
    		}
    	}
    	while(y>1){
    		int cur=p[y];
    		while(y>1 && y%cur==0){
    			fre[cur]++;
    			if(fre[cur]==1)prime_div.push_back(cur);
    			y/=cur;
    		}
    	}
    	int res=1;
    	for(auto it:prime_div){
    		res*=(fre[it]+1);
    		fre[it]=0;
    	}
    	return res;
    }
    void precal(){
    	prefix[1]=1;
    	prefix[2]=2;
    	for(int i=3;i<=limit;i++){
    		int x=i,y=i+1;
    		if(x % 2==0)x/=2;
    		else y/=2;
    		prefix[i]=max(divisor(x,y),prefix[i-1]);
    	
    	}
    }
    void prime(){
    	for(int i=1;i<M;i++)p[i]=i;
    	for(int i=2;i<M;i+=2)p[i]=2;
    	for(int i=3;i*i<M;i+=2){
    		if(p[i]==i){
    			for(int j=i*i;j<M;j+=i){
    				if(p[j]==j)p[j]=i;
    			}
    		}
    	}
    }
    int main()
    {
        ios::sync_with_stdio(false);
        cin.tie(0);
        int t=1;
        cin>>t;
        prime();
        precal();
        while(t--){
            int n;
            cin>>n;
            cout<<prefix[n]<<"\n";
        	}
        	
        	   
        return 0;
     
    }
    
  • 1

Information

ID
1180
Difficulty
6
Category
Number_Theory Click to Show
Tags
# Submissions
63
Accepted
20
Accepted Ratio
32%
Uploaded By